15.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+1,0≤x≤1\\ \frac{1}{2}sin({\frac{π}{4}x})+\frac{3}{2},1<x≤4\end{array}\right.$,若不等式f2(x)-af(x)+2<0在x∈[0,4]上恒成立,則實數(shù)a取值范圍是(  )
A.$a>2\sqrt{2}$B.$2\sqrt{2}<a<3$C.a>3D.$3<a<2\sqrt{3}$

分析 這是一個復(fù)合函數(shù)的問題,通過換元t=f(x),可知新元的范圍,然后分離參數(shù),轉(zhuǎn)互為求函數(shù)的最值問題,進(jìn)而計算可得結(jié)論.

解答 解:由題可知,當(dāng)x∈[0,1]時,f(x)=x+1∈[1,2],
當(dāng)x∈(1,4]時,$\frac{π}{4}$x∈($\frac{π}{4}$,π],sin($\frac{π}{4}$x)∈[0,1],f(x)=$\frac{1}{2}$sin($\frac{π}{4}$x)+$\frac{3}{2}$∈[$\frac{3}{2}$,2],
所以當(dāng)x∈[0,4]時f(x)∈[1,2],令t=f(x),則t∈[1,2],
從而問題轉(zhuǎn)化為不等式t2-at+2<0在t∈[1,2]上恒成立,
即a>$\frac{{t}^{2}+2}{t}$=t+$\frac{2}{t}$在t∈[1,2]上恒成立,
問題轉(zhuǎn)化為求函數(shù)y=t+$\frac{2}{t}$在[1,2]上的最大值,
又因為y=t+$\frac{2}{t}$在[1,2]上單調(diào)遞減,
所以y=t+$\frac{2}{t}$≤1+2=3,
所以a>3,.
故選:C.

點評 本題考查復(fù)合函數(shù)的恒成立問題,考查換元法,考查分離參數(shù)解決恒成立問題,涉及三角函數(shù)在區(qū)間上的值域問題,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知雙曲線C1與雙曲線C2的焦點重合,C1的方程為$\frac{x^2}{3}-{y^2}=1$,若C2的一條漸近線的傾斜角是C1的一條漸近線的傾斜角的2倍,則C2的方程為${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-1|+|x+1|-2.
(1)求不等式f(x)≥1的解集;
(2)若關(guān)于x的不等式f(x)≥a2-a-2在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知點$P({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$,將向量$\overrightarrow{OP}$繞原點O按逆時針方向旋轉(zhuǎn)x弧度得到向量$\overrightarrow{OQ}$.
(1)若$x=\frac{π}{4}$,求點Q的坐標(biāo);
(2)已知函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,令$g(x)=f(x)•f({x+\frac{π}{3}})$,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z滿足(z-1)i=|i+1|,則z=( 。
A.-2-iB.2-iC.$1-\sqrt{2}i$D.$-1-\sqrt{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著.在這部著作中,許多數(shù)學(xué)問題都是以歌訣形式呈現(xiàn)的,“竹筒容米”就是其中一首:家有八節(jié)竹一莖,為因盛米不均平;下頭三節(jié)三生九,上梢三節(jié)貯三升;唯有中間二節(jié)竹,要將米數(shù)次第盛;若是先生能算法,也教算得到天明!大意是:用一根8節(jié)長的竹子盛米,每節(jié)竹筒盛米的容積是不均勻的.下端3節(jié)可盛米3.9升,上端3節(jié)可盛米3升,要按依次盛米容積相差同一數(shù)量的方式盛米,中間兩節(jié)可盛米多少升.由以上條件,要求計算出這根八節(jié)竹筒盛米的容積總共為( 。┥
A.9.0B.9.1C.9.2D.9.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某中藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為p,兩天是否下雨互不影響,若兩天都下雨的概率為0.04.
周一無雨無雨有雨有雨
周二無雨有雨無雨有雨
收益10萬元8萬元5萬元
(1)求p及基地的預(yù)期收益;
(2)若該基地額外聘請工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無雨時收益為11萬元,有雨時收益為6萬元,且額外聘請工人的成本為5000元,問該基地是否應(yīng)該額外聘請工人,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=a|x-1|-|x+1|.其中a>1
(Ⅰ)當(dāng)a=2時,求不等式f(x)≥3的解集;
(Ⅱ)若函數(shù)y=f(x)的圖象與直線y=1圍成三角形的面積為$\frac{27}{8}$,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出下列命題:
①函數(shù)y=cos($\frac{5π}{2}$-2x)是偶函數(shù);
②函數(shù)y=sin(x+$\frac{π}{4}$)在閉區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上是增函數(shù);
③直線x=$\frac{π}{8}$是函數(shù)y=sin(2x+$\frac{5π}{4}$)圖象的一條對稱軸;
④將函數(shù)y=cos(2x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{3}$單位,得到函數(shù)y=cos2x的圖象,其中正確的命題的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案