A. | $a>2\sqrt{2}$ | B. | $2\sqrt{2}<a<3$ | C. | a>3 | D. | $3<a<2\sqrt{3}$ |
分析 這是一個復(fù)合函數(shù)的問題,通過換元t=f(x),可知新元的范圍,然后分離參數(shù),轉(zhuǎn)互為求函數(shù)的最值問題,進(jìn)而計算可得結(jié)論.
解答 解:由題可知,當(dāng)x∈[0,1]時,f(x)=x+1∈[1,2],
當(dāng)x∈(1,4]時,$\frac{π}{4}$x∈($\frac{π}{4}$,π],sin($\frac{π}{4}$x)∈[0,1],f(x)=$\frac{1}{2}$sin($\frac{π}{4}$x)+$\frac{3}{2}$∈[$\frac{3}{2}$,2],
所以當(dāng)x∈[0,4]時f(x)∈[1,2],令t=f(x),則t∈[1,2],
從而問題轉(zhuǎn)化為不等式t2-at+2<0在t∈[1,2]上恒成立,
即a>$\frac{{t}^{2}+2}{t}$=t+$\frac{2}{t}$在t∈[1,2]上恒成立,
問題轉(zhuǎn)化為求函數(shù)y=t+$\frac{2}{t}$在[1,2]上的最大值,
又因為y=t+$\frac{2}{t}$在[1,2]上單調(diào)遞減,
所以y=t+$\frac{2}{t}$≤1+2=3,
所以a>3,.
故選:C.
點評 本題考查復(fù)合函數(shù)的恒成立問題,考查換元法,考查分離參數(shù)解決恒成立問題,涉及三角函數(shù)在區(qū)間上的值域問題,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2-i | B. | 2-i | C. | $1-\sqrt{2}i$ | D. | $-1-\sqrt{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9.0 | B. | 9.1 | C. | 9.2 | D. | 9.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
周一 | 無雨 | 無雨 | 有雨 | 有雨 |
周二 | 無雨 | 有雨 | 無雨 | 有雨 |
收益 | 10萬元 | 8萬元 | 5萬元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com