(本小題10分) 等比數(shù)列{}的前n 項(xiàng)和為,已知,,成等差數(shù)列
(1)求{}的公比q;
(2)求-=3,求;
(1);(2)。
解析試題分析:(1)依題意有 ,由于 ,故 ,故可得公比的值。
(2)由已知可得,從而得到首項(xiàng)的值,并求解和式。
(1)依題意有
由于 ,故
又,從而 5分
(2)由已知可得
故
從而 10分
考點(diǎn):本題主要考查等比數(shù)列和等差數(shù)列的通項(xiàng)公式以及前n項(xiàng)和的關(guān)系式的求解運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是數(shù)量的運(yùn)用等差數(shù)列和等比數(shù)列的前n項(xiàng)和公式得到基本量的關(guān)系式,進(jìn)而得到結(jié)論。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列的首項(xiàng)為,前項(xiàng)和為,且是與的等差中項(xiàng)
(Ⅰ)求數(shù)列的通項(xiàng)公式; (Ⅱ求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對于任意,滿足關(guān)系.
(Ⅰ)證明:是等比數(shù)列;
(Ⅱ)在正數(shù)數(shù)列中,設(shè),求數(shù)列中的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)遞增等比數(shù)列{}的前n項(xiàng)和為,且=3,=13,數(shù)列{}滿足=,點(diǎn)P(,)在直線x-y+2=0上,n∈N﹡.
(Ⅰ)求數(shù)列{},{}的通項(xiàng)公式;
(Ⅱ)設(shè)=,數(shù)列{}的前n項(xiàng)和,若>2a-1恒成立(n∈N﹡),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和.已知,且構(gòu)成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式.
(2)令求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)等比數(shù)列中,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若分別為等差數(shù)列的第4項(xiàng)和第16項(xiàng),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12 分)
已知數(shù)列為等比數(shù)列,且首項(xiàng)為,公比為,前項(xiàng)和為.
(Ⅰ)試用,,表示前項(xiàng)和;
(Ⅱ)證明(Ⅰ)中所寫出的等比數(shù)列的前項(xiàng)和公式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共13分)已知數(shù)列中,,,是數(shù)列的前項(xiàng)和,且,.
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)若 是數(shù)列的前項(xiàng)和,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com