【題目】在平面直角坐標(biāo)系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為 ,橢圓的右頂點(diǎn)為A.

(1)求該橢圓的方程:
(2)過點(diǎn)D( ,﹣ )作直線PQ交橢圓于兩個(gè)不同點(diǎn)P,Q,求證:直線AP,AQ的
斜率之和為定值.

【答案】
(1)

解:由題意可知:橢圓 =l (a>b>0),焦點(diǎn)在x軸上,2c=1,c=1,

橢圓的離心率e= = ,則a= ,b2=a2﹣c2=1,

則橢圓的標(biāo)準(zhǔn)方程:


(2)

解:證明:設(shè)P(x1,y1),Q(x2,y2),A( ,0),

由題意PQ的方程:y=k(x﹣ )﹣ ,

,整理得:(2k2+1)x2﹣(4 k2+4 k)x+4k2+8k+2=0,

由韋達(dá)定理可知:x1+x2= ,x1x2= ,

則y1+y2=k(x1+x2)﹣2 k﹣2 = ,

則kAP+kAQ= + = ,

由y1x2+y2x1=[k(x1 )﹣ ]x2+[k(x2 )﹣ ]x1=2kx1x2﹣( k+ )(x1+x2)=﹣ ,

kAP+kAQ= = =1,

∴直線AP,AQ的斜率之和為定值1.


【解析】(1)由題意可知2c=2,c=1,離心率e= ,求得a=2,則b2=a2﹣c2=1,即可求得橢圓的方程:(2)則直線PQ的方程:y=k(x﹣ )﹣ ,代入橢圓方程,由韋達(dá)定理及直線的斜率公式,分別求得直線AP,AQ的斜率,即可證明直線AP,AQ的率之和為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐, 底面,底面為正方形, , 分別是的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.

(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;

(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對(duì)邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長(zhǎng);
(2)求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣1:幾何證明選講
如圖,AB為⊙O直徑,直線CD與⊙O相切與E,AD垂直于CD于D,BC垂直于CD于C,EF垂直于F,連接AE,BE.證明:

(1)∠FEB=∠CEB;
(2)EF2=ADBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,⊥底面,的中點(diǎn).

已知,,.求:

(1)三棱錐PABC的體積;

(2)異面直線BCAD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知n為正整數(shù),數(shù)列{an}滿足an>0,4(n+1)an2﹣nan+12=0,設(shè)數(shù)列{bn}滿足bn=
(1)求證:數(shù)列{ }為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實(shí)數(shù)t的值:
(3)若數(shù)列{bn}是等差數(shù)列,前n項(xiàng)和為Sn , 對(duì)任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正四棱錐P﹣ABCD中,PA=AB=2,點(diǎn)M,N分別在PA,BD上,且 =
(1)求異面直線MN與PC所成角的大小;
(2)求二面角N﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的離心率,過橢圓的上頂點(diǎn)和右頂點(diǎn)的直線與原點(diǎn)的距離為,

(1)求橢圓的方程;

(2)是否存在直線經(jīng)過橢圓左焦點(diǎn)與橢圓交于,兩點(diǎn),使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案