1.已知角α的頂點與坐標(biāo)原點重合,始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過點P(1,-2),則sin2α=-$\frac{4}{5}$.

分析 根據(jù)三角函數(shù)的定義,求出sinα和cosα,利用二倍角公式可得sin2α的值.

解答 解:由三角函數(shù)的定義,
可得:sinα=$\frac{y}{r}=\frac{y}{\sqrt{{x}^{2}+{y}^{2}}}$=$-\frac{2\sqrt{5}}{5}$,
cosα=$\frac{x}{r}=\frac{x}{\sqrt{{x}^{2}+{y}^{2}}}$=$\frac{\sqrt{5}}{5}$,
那么sin2α=2sinαcosα=$-\frac{2\sqrt{5}}{5}$×2×$\frac{\sqrt{5}}{5}$=-$\frac{4}{5}$.
故答案為:$-\frac{4}{5}$.

點評 本題考查任意角的三角函數(shù)的定義,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,過左焦點F且垂直于x軸的弦長為1.
( I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點P(m,0)為橢圓C的長軸上的一個動點,過點P且斜率為$\frac{1}{2}$的直線l交橢圓C于A,B兩點,問:|PA|2+|PB|2是否為定值?若是,求出這個定值并證明,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{cos(x-\frac{π}{2})}&{x∈[0,π]}\\{lo{g}_{2017}\frac{x}{π}}&{x∈(π,+∞)}\end{array}\right.$若存在三個不相等的實數(shù)a,b,c使得f(a)=f(b)=f(c),則a+b+c的取值范圍為(2π,2018π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$m=({sinx-\sqrt{3}cosx,1}),n=({sin({\frac{π}{2}+x}),\frac{{\sqrt{3}}}{2}})$,若f(x)=m•n.
(I)求f(x)的單調(diào)遞增區(qū)間;
(II)己知△ABC的三內(nèi)角A,B,C對邊分別為a,b,c,且a=3,f$({\frac{A}{2}+\frac{π}{12}})=\frac{1}{2}$,sinC=2sinB,求A,c,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},}&{x≤1}\\{x+\frac{4}{x}-3,}&{x>1}\end{array}\right.$,則f(x)的值域是( 。
A.[1,+∞)B.[0,+∞)C.(1,+∞)D.[0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在平面直角坐標(biāo)系xOy中,已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{5}$,從C的右焦點F引漸近線的垂線,垂足為A,若△AFO的面積為1,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“a<-2”是“函數(shù)y=ax+3在區(qū)間(-1,3)上存在零點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)點M,N是拋物線y=ax2(a>0)上任意兩點,點G(0,-1)滿足$\overrightarrow{GN}$•$\overrightarrow{GM}$>0,則a的取值范圍是($\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,則滿足f(f(m))>f(m)+1的m的取值范圍是( 。
A.$({-\frac{1}{2},+∞})$B.(0,+∞)C.(-1,+∞)D..$({-\frac{1}{3},+∞})$

查看答案和解析>>

同步練習(xí)冊答案