(2013•房山區(qū)一模)“m≤2”是“函數(shù)f(x)=x2+2x+m存在零點(diǎn)”的( 。
分析:可得函數(shù)由零點(diǎn)的充要條件為△=22-4×1×m≥0,解之可得m的范圍,由集合的包含關(guān)系可得答案.
解答:解:函數(shù)f(x)=x2+2x+m存在零點(diǎn)的充要條件為△=22-4×1×m≥0,
解得m≤1,因?yàn)榧蟵m|m≤2}是集合{m|m≤1}的真子集,
故“m≤2”是“函數(shù)f(x)=x2+2x+m存在零點(diǎn)”的必要不充分條件,
故選B
點(diǎn)評:本題考查充要條件的判斷,涉及函數(shù)的零點(diǎn)問題,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)設(shè)集合M是R的子集,如果點(diǎn)x0∈R滿足:?a>0,?x∈M,0<|x-x0|<a,稱x0為集合M的聚點(diǎn).則下列集合中以1為聚點(diǎn)的有(  )
{
n
n+1
|n∈N}
;    
{
2
n
|n∈N*}
;    
③Z;    
④{y|y=2x}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)已知函數(shù)f(x)=
1
2
x2-alnx-
1
2
(a∈R,a≠0)

(Ⅰ)當(dāng)a=2時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若對任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)已知全集U=R,集合M={x|x≤1},N={x|x2>4},則M∩(?RN)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)執(zhí)行如圖所示的程序框圖.若輸出S=15,則框圖中①處可以填入(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,ABCD為直角梯形,BC∥AD,∠ADC=90°,BC=CD=
12
AD=1
,PA=PD,E,F(xiàn)為AD,PC的中點(diǎn).
(Ⅰ)求證:PA∥平面BEF;
(Ⅱ)若PC與AB所成角為45°,求PE的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.

查看答案和解析>>

同步練習(xí)冊答案