【題目】已知△ABC的三個內角A,B,C所對應的邊分別為a,b,c,且滿足asinB= bcosA.
(1)求A的大;
(2)若a=7,b=5,求△ABC的面積.
【答案】
(1)解:依正弦定理可將asinB= bcosA化為:sinAsinB= sinBcosA
因為在△ABC中,sinB>0,
所以sinA= cosA,即tanA= ,
∵0<A<π,
∴A= .
(2)解:因為,a=7,b=5,A= ,
所以,由余弦定理可得:49=25+c2﹣2× ,
整理可得:c2﹣5c﹣24=0,解得:c=8,或﹣3(舍去),
所以,S△ABC= bcsinA= =10 .
【解析】1、根據題意利用正弦定理可得tanA= ,在△ABC中,0<A<π,因此A= .
2、利用余弦定理可求出c=8,再根據三角形面積公式S△ABC= bcsinA即得結果。
【考點精析】通過靈活運用正弦定理的定義,掌握正弦定理:即可以解答此題.
科目:高中數學 來源: 題型:
【題目】在5件產品中,有3件一等品和2件二等品,從中任取2件,那么以 為概率的事件是( )
A.都不是一等品
B.恰有一件一等品
C.至少有一件一等品
D.至多一件一等品
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖的平面多邊形ACBEF中,四邊形ABEF是矩形,點O為AB的中點,△ABC中,AC=BC,現(xiàn)沿著AB將△ABC折起,直至平面ABEF⊥平面ABC,如圖,此時OE⊥FC.
(1)求證:OF⊥EC;
(2)若FC與平面ABC所成角為30°,求二面角F﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex , g(x)=lnx
(1)若曲線h(x)=f(x)+ax2﹣ex(a∈R)在點(1,h(1))處的切線垂直于y軸,求函數h(x)的單調區(qū)間;
(2)若函數 在區(qū)間(0,2)上無極值,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某少數民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構成,小正方形數越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.
(Ⅰ)求出f(5);
(Ⅱ)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)的關系式,并根據你得到的關系式求f(n)的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個不透明的袋子裝有4個完全相同的小球,球上分別標有數字為0,1,2,2,現(xiàn)甲從中摸出一個球后便放回,乙再從中摸出一個球,若摸出的球上數字大即獲勝(若數字相同則為平局),則在甲獲勝的條件下,乙摸1號球的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com