的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖).
(1)求點(diǎn)P的坐標(biāo);
(2)焦點(diǎn)在x軸上的橢圓C過點(diǎn)P,且與直線交于A,B兩點(diǎn),若的面積為2,求C的標(biāo)準(zhǔn)方程.

(1);(2)

解析試題分析:(1)首先設(shè)切點(diǎn),由圓的切線的性質(zhì),根據(jù)半徑的斜率可求切線斜率,進(jìn)而可表示切線方程為,建立目標(biāo)函數(shù).故要求面積最小值,只需確定的最大值,由結(jié)合目標(biāo)函數(shù),易求;(2)設(shè)橢圓標(biāo)準(zhǔn)方程為,點(diǎn)在橢圓上,代入點(diǎn)得①,利用弦長公式表示,利用點(diǎn)到直線距離公式求高,進(jìn)而表示的面積,與①聯(lián)立,可確定,進(jìn)而確定橢圓的標(biāo)準(zhǔn)方程.
(1)設(shè)切點(diǎn)坐標(biāo)為.則切線斜率為.切線方程為.即.此時(shí),兩個(gè)坐標(biāo)軸的正半軸于切線圍成的三角形面積.由知當(dāng)且僅當(dāng)時(shí),有最大值.即有最小值.因此點(diǎn)的坐標(biāo)為
(2)設(shè)的標(biāo)準(zhǔn)方程為.點(diǎn).由點(diǎn)上知.并由.又是方程的根,因此,由,,得.由點(diǎn)到直線的距離為.解得.因此,(舍)或
.從而所求的方程為
考點(diǎn):1、直線方程;2、橢圓的標(biāo)準(zhǔn)方程;3、弦長公式和點(diǎn)到直線的距離公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:=1(a>0,b>0)的離心率與雙曲線=1的一條漸近線的斜率相等以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線sin·x+cos·y-l=0相切(為常數(shù)).
(1)求橢圓C的方程;
(2)若過點(diǎn)M(3,0)的直線與橢圓C相交TA,B兩點(diǎn),設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A,B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-,求斜率k的值;
②已知點(diǎn)M(-,0),求證:·為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
如圖,已知拋物線,過點(diǎn)任作一直線與相交于兩點(diǎn),過點(diǎn)軸的平行線與直線相交于點(diǎn)為坐標(biāo)原點(diǎn)).

(1)證明:動(dòng)點(diǎn)在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點(diǎn),與(1)中的定直線相交于點(diǎn),證明:為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)為橢圓外一點(diǎn),且點(diǎn)到橢圓的兩條切線相互垂直,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),分別是橢圓的左右焦點(diǎn),M是C上一點(diǎn)且與x軸垂直,直線與C的另一個(gè)交點(diǎn)為N.
(1)若直線MN的斜率為,求C的離心率;
(2)若直線MN在y軸上的截距為2,且,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別是A、B,過點(diǎn)的動(dòng)直線與橢圓交于M,N兩點(diǎn),連接AN、BM相交于G點(diǎn),試求點(diǎn)G的橫坐標(biāo)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是橢圓的 左,右焦點(diǎn)。
(1)若P是該橢圓上一個(gè)動(dòng)點(diǎn),求的 最大值和最小值。
(2)設(shè)過定點(diǎn)M(0,2)的 直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),雙曲線的左支上有一點(diǎn)P,∠F1PF2,且△PF1F2的面積為2,雙曲線的離心率為2,求該雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案