(理)已知函數(shù)f(x)=x2+lnx+(a-4)x在(1,+∞)上是增函數(shù).

(1)求實(shí)數(shù)a的取值范圍;

(2)在(1)的結(jié)論下,設(shè)g(x)=|ex-a|+,x∈[0,ln3],求函數(shù)g(x)的最小值.

(文)已知函數(shù)f(x)=x3+ax2+bx+c,g(x)=12x-4,若f(-1)=0,且f(x)的圖象在點(diǎn)(1,f(1))處的切線方程為y=g(x).

(1)求實(shí)數(shù)a、b、c的值;

(2)求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間.

答案:(理)解:(1)f′(x)=x++a-4.

∵f(x)在(1,+∞)上是增函數(shù),∴x++a-4≥0在(1,+∞)上恒成立,即a≥4-(x+)恒成立.∵x+≥2(當(dāng)且僅當(dāng)x=1時(shí),等號(hào)成立),∴4-(x+)<2.∴a≥2.

(2)設(shè)t=ex,則h(t)=|t-a|+.∵0≤x≤ln3,∴1≤t≤3.當(dāng)2≤a≤3時(shí),h(t)=

∴h(t)的最小值為h(a)=.

當(dāng)a>3時(shí),h(t)=-t+a+.∴h(t)的最小值為h(3)=a-3+.

∴當(dāng)2≤a≤3時(shí),g(x)的最小值為;當(dāng)a>3時(shí),g(x)的最小值為a-3+.

(文)解:(1)∵f(-1)=0,∴-1+a-b+c=0.①

∵f′(x)=3x2+2ax+b,又f(x)的圖象在點(diǎn)(1,f(1))處的切線方程為y=g(x),∴f(1)=g(1)=8,且f′(1)=12.

即a+b+c=7,②

2a+b=9.③

聯(lián)立方程①②③,解得a=3,b=3,c=1.

(2)h(x)=f(x)-g(x)=x3+3x2-9x+5.h′(x)=3x2+6x-9=3(x+3)(x-1).

令h′(x)=0,得x=-3或x=1.

X

(-∞,-3)

-3

(-3,1)

1

(1,+∞)

f′(x)

+

0

-

0

+

f(x)

*?

極大

極小

 

故h(x)的單調(diào)增區(qū)間為(-∞,-3),(1,+∞),單調(diào)減區(qū)間為(-3,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知函數(shù)f(x)=
sin2x-(a-4)(sinx-cosx)+a
的定義域?yàn)?span id="bwz87zx" class="MathJye">{x|2kπ≤x≤2kπ+
π
2
,k∈Z},則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•普陀區(qū)三模)(理)已知函數(shù)f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是
(2,2012)
(2,2012)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•普陀區(qū)三模)(理)已知函數(shù)f(x)=
ln(2-x2)|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)右圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè)Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(duì)(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問(wèn)是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對(duì)一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案