已知橢圓
x2
49
+
y2
24
=1
上一點P與橢圓的兩個焦點F1,F(xiàn)2連線的夾角為直角,則|PF1|•|PF2|=
48
48
分析:先設(shè)出|PF1|=m,|PF2|=n,利用橢圓的定義求得n+m的值,平方后求得mn和m2+n2的關(guān)系,代入△F1PF2的勾股定理中求得mn的值.
解答:解:設(shè)|PF1|=m,|PF2|=n,
由橢圓的定義可知m+n=2a=14,
∴m2+n2+2nm=196,
∴m2+n2=196-2nm
由勾股定理可知m2+n2=4c2=100,
求得mn=48
故答案為:48.
點評:本題主要考查了橢圓的應(yīng)用,橢圓的簡單性質(zhì)和橢圓的定義.考查了考生對所學知識的綜合運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的漸近線方程為y=±2x,且與橢圓
x2
49
+
y2
24
=1
有相同的焦點,則其焦點坐標為
 
,雙曲線的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線與橢圓
x2
49
+
y2
24
=1
共焦點,且以y=±
4
3
x
為漸近線,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)焦點在x軸上的橢圓,短軸上的一個端點與兩個焦點為同一個正三角形的頂點,焦點與橢圓上點的最近距離為
3
,求橢圓標準方程.
(2)已知雙曲線與橢圓
x2
49
+
y2
24
=1公共焦點,且以y=±
4
3
x為漸近線,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線與橢圓
x2
49
+
y2
24
=1
有共同的焦點,且以y=±
4
3
x
為漸近線.
(1)求雙曲線方程.
(2)求雙曲線的實軸長.虛軸長.焦點坐標及離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線與橢圓
x2
49
+
y2
24
=1
共焦點,且以y=±
4
3
x
為漸近線,求雙曲線方程.

查看答案和解析>>

同步練習冊答案