(文科)(本小題滿分12分)長方體中,,,是底面對角線的交點.
(Ⅰ) 求證:平面;
(Ⅱ) 求證:平面;
(Ⅲ) 求三棱錐的體積。
(Ⅰ)由,
且在平面外.得平面;
(Ⅱ)連結(jié)得到平面;
又∵在上,可得;
計算;
同理:∵中,
推出平面。
(Ⅲ)。
【解析】
試題分析:(Ⅰ) 證明:依題意:,
且在平面外.…2分
∴平面 3分
(Ⅱ) 證明:連結(jié)∵
∴平面 4分
又∵在上,∴在平面上
∴ 5分
∵ ∴
∴∴中, 6分
同理:∵中,
∴ 7分,∴平面 8分
(Ⅲ)解:∵平面∴所求體積
12分
考點:本題主要考查立體幾何中的平行關系、垂直關系,幾何體體積的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟。利用向量可簡化證明過程。本題難度不大。
科目:高中數(shù)學 來源:2012-2013學年江西省高三4月月考數(shù)學文理合卷試卷(解析版) 題型:解答題
(文科)(本小題滿分12分)某高校從參加今年自主招生考試的學生中隨機抽取容量為50的學生成績樣本,得頻率分布表如下:
組號 |
分組 |
頻數(shù) |
頻率 |
第一組 |
[230,235) |
8 |
0.16 |
第二組 |
[235,240) |
① |
0.24 |
第三組 |
[240,245) |
15 |
② |
第四組 |
[245,250) |
10 |
0.20 |
第五組 |
[250,255] |
5 |
0.10 |
合 計 |
50 |
1.00 |
(1)寫出表中①②位置的數(shù)據(jù);
(2)為了選拔出更優(yōu)秀的學生,高校決定在第三、四、五組中用分層抽樣法抽取6名學生進行第二輪考核,分別求第三、四、五各組參加考核人數(shù);
(3)在(2)的前提下,高校決定在這6名學生中錄取2名學生,求2人中至少有1名是第四組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三復習練習題文科數(shù)學(36) 題型:解答題
(本小題滿分12分)
某校高三文科分為四個班.高三數(shù)學調(diào)研測試后, 隨機地在各班抽取部分學生進行
測試成績統(tǒng)計,各班被抽取的學生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了22人.
抽取出來的所有學生的測試成績統(tǒng)計結(jié)果的頻率分布條形圖如圖5所示,其中120~130
(包括120分但不包括130分)的頻率為0.05, 此分數(shù)段的人數(shù)為5人.
(1)問各班被抽取的學生人數(shù)各為多少人?
(2)在抽取的所有學生中,
任取一名學生, 求分數(shù)
不小于90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年云南省芒市高三教學質(zhì)量檢測數(shù)學理卷 題型:解答題
(本小題滿分12分)(文科做前兩問;理科全做.)
某會議室用3盞燈照明,每盞燈各使用節(jié)能燈棍一只,且型號相同.假定每盞燈能否正常照明只與燈棍的壽命有關,該型號的燈棍壽命為1年以上的概率為0.8,壽命為2年以上的概率為0.3,從使用之日起每滿1年進行一次燈棍更換工作,只更換已壞的燈棍,平時不換.
(I)在第一次燈棍更換工作中,求不需要更換燈棍的概率;
(II)在第二次燈棍更換工作中,對其中的某一盞燈來說,求該燈需要更換燈棍的概率;
(III)設在第二次燈棍更換工作中,需要更換的燈棍數(shù)為ξ,求ξ的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江蘇省高二第二次月考數(shù)學試卷 題型:解答題
(文科做)(本小題滿分16分)
已知橢圓過點,離心率為,圓的圓心為坐標原點,直徑為橢圓的短軸,圓的方程為.過圓上任一點作圓的切線,切點為.
(1)求橢圓的方程;
(2)若直線與圓的另一交點為,當弦最大時,求直線的直線方程;
(3)求的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com