13.某校安排5個(gè)班到4個(gè)工廠進(jìn)行社會(huì)實(shí)踐,每個(gè)班取一個(gè)工廠,每個(gè)工廠至少安排一個(gè)班,不同的安排方法共有240 種.(用數(shù)字作答)

分析 先在5個(gè)班中任取2個(gè)班,組成一組,再分到4個(gè)工廠,即可得到結(jié)論.

解答 解:先在5個(gè)班中任取2個(gè)班,組成一組,再分到4個(gè)工廠,故共有${C}_{5}^{2}{A}_{4}^{4}$=240種,
故答案為:240.

點(diǎn)評(píng) 本題考查排列組合知識(shí),考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=ex-1-ax(a>1)在[0,a]上的最小值為f(x0),且x0<2,則實(shí)數(shù)a的取值范圍是( 。
A.(1,2)B.(1,e)C.(2,e)D.($\frac{e}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某高!敖y(tǒng)計(jì)初步“課程教師隨機(jī)調(diào)查了選該科的一些學(xué)生情況,共調(diào)查了50人,其中女生27人,男生23人.女生中有20人選統(tǒng)計(jì)專業(yè),另外7人選非統(tǒng)計(jì)專業(yè),男生中有10人選統(tǒng)計(jì)專業(yè),另外13人選非統(tǒng)計(jì)專業(yè).
(1)根據(jù)以上數(shù)據(jù)完成下列的2×2聯(lián)列表:
  專業(yè)
性別
非統(tǒng)計(jì)專業(yè)統(tǒng)計(jì)專業(yè)合計(jì)
合計(jì)
(2)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.05的情況下,認(rèn)為主修統(tǒng)計(jì)專業(yè)與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=-x3+3x2+9x+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知數(shù)列{an}的前n項(xiàng)和${S_n}=3{n^2}-2n+1$,求通項(xiàng)公式an;
(2)在數(shù)列{an}中,a1=1,an+1-an=2n+1,求數(shù)列的通項(xiàng)an;
(3)在數(shù)列{an}中,a1=1,前n項(xiàng)和${S_n}=\frac{n+2}{3}{a_n}$,求{an}的通項(xiàng)公式an
(4)已知在每項(xiàng)均大于零的數(shù)列{an}中,首項(xiàng)a1=1,且前n項(xiàng)和Sn滿足${S_n}\sqrt{{S_{n-1}}}-{S_{n-1}}\sqrt{S_n}=2\sqrt{{S_n}{S_{n-1}}}$(n∈N*,n≥2),求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)a與b為正數(shù),并且滿足a+b=1,a2+b2≥k,則k的最大值為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)$f(x)=\frac{sinx}{x^2}$,則f′(π)=-$\frac{1}{{π}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$f(x)=\frac{e^x}{x}$的單調(diào)增區(qū)間是(  )
A.(-∞,1)B.(1,+∞)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)是R上的奇函數(shù),對(duì)于?x∈(0,+∞)都有f(x+2)=-f(x),且x∈(0,1]時(shí),f(x)=2x+1,則f(-2015)+f(2016)的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案