精英家教網 > 高中數學 > 題目詳情
若{an}為等比數列a5•a11=3,a3+a13=4,則
a5
a15
=( 。
A、3
B、
1
3
C、3或
1
3
D、-3或-
1
3
分析:根據等比數列的性質,寫出a3•a13=3,和另一個組成二元二次方程組,解出兩項的值,得到公比的10次方的值,而要求的結果是和公比的10次方有關的.
解答:解:∵{an}為等比數列a5•a11=3,
∴a3•a13=3  ①
∵a3+a13=4   ②
由①②得a3=3,a13=1或a3=1,a13=3
∴q10=
1
3
或3,
a5
a15
=
1
3
或3,
故選C.
點評:本題考查等比數列的通項,本題解題的關鍵是寫出關于兩項的方程組,解方程組是兩組解都合題意,不要漏掉.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

13、已知數列{an}的前n項和為Sn=3n+a,若{an}為等比數列,則實數a的值為
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

有以下四個命題:①若命題P:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1;②?α,β∈R,使得sin(α+β)=sinα+sinβ;③若{an}為等比數列;甲:m+n=p+q(m、n、p、q∈N*)    乙:am•an=ap•aq,則甲是乙的充要條件;④設p、q是簡單命題,若“p∨q”為假命題,則“?p∧?q”為真命題.其中真命題的序號
②④
②④

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c同時滿足以下條件:
①f(3-x)=f(x);②f(1)=0;③對任意實數x,f(x)≥
1
4a
-
1
2
恒成立.
(1)求y=f(x)的表達式;
(2)若{an}為等比數列,a1=f(5),公比q=
c
b
,令Sn=a1+a2+…+an,求Sn的最大值;
(3)令Tn=a1a2a3…an(n∈N*),試求Tn的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出以下四個命題:
①在△ABC中,若a=
3
,b=
6
,A=60°
,則此三角形不存在;
②當0<θ≤
π
2
時,sinθ+
2
sinθ
的最小值為2
2
;
③經過點(1,2)且在x軸、y軸上截距相等的直線方程是x+y-3=0;
④已知數列{an}的前n項和Sn=2n+r,若{an}為等比數列,則實數r=-1.
則其中所有正確命題的序號是
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和為Sn,給出下列四個命題:
①若Sn=n2+bn+c(b,c∈R),則{an}為等差數列;
②若{an}為等差數列且a1>0,則數列{a1an}為等比數列;
③若{an}為等比數列,則{lgan}為等差數列;
④若{an}為等差數列,且Sn=100,a2n+1+a2n+2+…+a3n=-120,則S2n=90,其中真命題有
②④
②④

查看答案和解析>>

同步練習冊答案