(2012•成都一模)在用數(shù)學歸納法證明f(n)=
1
n
+
1
n+1
+…+
1
2n
<1(n∈N*,n≥3)的過程中:假設當n=k(k∈N*,k≥3)時,不等式f(k)<1成立,則需證當n=k+1時,f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=( 。
分析:根據(jù)f(n)=
1
n
+
1
n+1
+…+
1
2n
,可知f(k)=
1
k
+
1
k+1
+…+
1
2k
,f(k+1)=
1
k+1
+
1
k+2
+…+
1
2k
+
1
2k+1
+
1
2k+2
,從而可得n=k到n=k+1變化了的項.
解答:解:∵f(k)=
1
k
+
1
k+1
+…+
1
2k
,f(k+1)=
1
k+1
+
1
k+2
+…+
1
2k
+
1
2k+1
+
1
2k+2

∴f(k+1)-f(k)=
1
2k+1
+
1
2k+2
-
1
k

∵f(k+1)=f(k)+g(k),
∴g(k)=
1
2k+1
+
1
2k+2
-
1
k
 
故選B.
點評:本題考查數(shù)學歸納法,考查數(shù)學歸納法中的推理,確定n=k到n=k+1變化了的項是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)=x2-2mx+2-m
(1)若不等式f(x)≥-mx+2在R上恒成立,求實數(shù)m的取值范圍
(2)設函數(shù)f(x)在[0,1]上的最小值為g(m),求g(m)的解析式及g(m)=1時實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)若函數(shù)f(x)滿足:在定義域D內(nèi)存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)為“1的飽和函數(shù)”.有下列函數(shù):
①f(x)=
1x
;②f(x)=2x

③f(x)=lg(x2+2);
④f(x)=cosπx,
其中你認為是“1的飽和函數(shù)”的所有函數(shù)的序號為
②④
②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)設正方體ABC-A1B1C1D1 的棱長為2,動點E,F(xiàn)在棱A1B1上,動點P、Q分別在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),則下列結(jié)論中錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)=
3
inωxcosωx+1-sin2ωx
的周期為2π,其中ω>0.
(I)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)在△ABC中,設內(nèi)角A、B、C所對邊的長分別為a、b,c若a=
3
,c=2,f(A)=
3
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)設集合S={1,2,3,4,5,6},定義集合對(A,B):A⊆S,B⊆S,A中含有3個元素,B中至少含有2個元素,且B中最小的元素不小于A中最大的元素.記滿足A∪B=S的集合對(A,B)的總個數(shù)為m,滿足A∩B≠∅的集合對(A,B)的總個數(shù)為n,則
m
n
的值為(  )

查看答案和解析>>

同步練習冊答案