(2013•崇明縣二模)已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c且c=
3
,f(C)=0,若sinB=2sinA,求a,b的值.
分析:(1)將f(x)解析式第二項(xiàng)利用二倍角的余弦函數(shù)公式化簡,整理后再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),由正弦函數(shù)的值域得出f(x)的最小值,找出ω的值,代入周期公式,即可求出f(x)的最小正周期;
(2)由(1)確定的f(x)解析式及f(C)=0,求出sin(2C-
π
6
)=1,由C的范圍,求出2x-
π
6
的范圍,利用特殊角的三角函數(shù)值及正弦函數(shù)的圖象求出C的度數(shù),由sinB=2sinA,利用正弦定理得到b=2a①,再利用余弦定理得到c2=a2+b2-2abcosC,將c與cosC的值代入得到關(guān)于a與b的方程,記作②,聯(lián)立①②即可求出a與b的值.
解答:解:(1)f(x)=
3
2
sin2x-cos2x-
1
2

=
3
2
sin2x-
1+cos2x
2
-
1
2

=
3
2
sin2x-
1
2
cos2x-1=sin(2x-
π
6
)-1,
∵-1≤sin(2x-
π
6
)-≤1,
∴f(x)的最小值為-2,
又ω=2,
則最小正周期是T=
2
=π;
(2)由f(C)=sin(2C-
π
6
)-1=0,得到sin(2C-
π
6
)=1,
∵0<C<π,∴-
π
6
<2C-
π
6
11π
6
,
∴2C-
π
6
=
π
2
,即C=
π
3
,
∵sinB=2sinA,∴由正弦定理得b=2a①,又c=
3
,
∴由余弦定理,得c2=a2+b2-2abcos
π
3
,即a2+b2-ab=3②,
聯(lián)立①②解得:a=1,b=2.
點(diǎn)評:此題屬于解三角形的題型,涉及的知識有:正弦、余弦定理,正弦函數(shù)的定義域與值域,二倍角的余弦函數(shù)公式,以及兩角和與差的正弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個等級,等級系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中抽取200件,對其等級系數(shù)進(jìn)行統(tǒng)計分析,得到頻率f的分布表如下:
X 1 2 3 4 5
f a 0.2 0.45 0.15 0.1
則在所抽取的200件日用品中,等級系數(shù)X=1的件數(shù)為
20
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足an2=S2n-1,n∈N*.?dāng)?shù)列{bn}滿足bn=
1anan+1
,n∈N*,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式an和數(shù)列{bn}的前n項(xiàng)和Tn;
(2)若對任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)設(shè)函數(shù) f(x)=
2x      (x≤0)
log2x (x>0)
,函數(shù)y=f[f(x)]-1的零點(diǎn)個數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知函數(shù)f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,則f(x)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)在直角△ABC中,∠C=90°,∠A=30°,BC=1,D為斜邊AB的中點(diǎn),則 
AB
CD
=
-1
-1

查看答案和解析>>

同步練習(xí)冊答案