精英家教網 > 高中數學 > 題目詳情

【題目】某出租車公司購買了140輛純電動汽車作為運營車輛,目前我國純電動汽車按續(xù)航里程數R(單位:千米)分為3類,即A類:,B類:C類:.該公司對這140輛車的行駛總里程進行統(tǒng)計,結果如下表:

類型

A

B

C

已行駛總里程不超過10萬千米的車輛數

10

40

30

已行駛總里程超過10萬千米的車輛數

20

20

20

1)從這140輛汽車中任取一輛,求該車行駛總里程超過10萬千米的概率;

2)公司為了了解這些車的工作狀況,決定抽取14輛車進行車況分析,按表中描述的六種情況進行分層抽樣,設從C類車中抽取了n輛車.

①求n的值;

②如果從這n輛車中隨機選取兩輛車,求恰有一輛車行駛總里程超過10萬千米的概率.

【答案】1;(2)①5;②

【解析】

1)根據題意,由頻率即可估計出概率;

2)①根據分層抽樣,由題意,可直接計算出的值;②先由題意,確定5輛車中已行駛總里程不超過10萬千米的車有3輛,記為a,b,c5輛車中已行駛總里程超過10萬千米的車有2輛,記為m,n;用列舉法,分別寫出總的基本事件,以及滿足題意的基本事件,基本事件個數比即為所求概率.

1)由題意,從這140輛汽車中任取一輛,則該車行駛總里程超過10萬千米的概率為

.

2)①依題意.

5輛車中已行駛總里程不超過10萬千米的車有3輛,記為a,b,c

5輛車中已行駛總里程超過10萬千米的車有2輛,記為mn.

5輛車中隨機選取兩輛車的所有選法共10種:

ab,acam,anbc,bmbn,cm,cn,mn.“

5輛車中隨機選取兩輛車,恰有一輛車行駛里程超過10萬千米的選法共6種:

aman,bm,bn,cm,cn,

則選取兩輛車中恰有一輛車行駛里程超過10萬千米的概率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某少數民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構成,小正方形數越多刺繡越漂亮,現按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形.

(1)求出,,并猜測的表達式;

(2)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數,試研究函數的極值情況;

(2)記函數在區(qū)間內的零點為,記,若在區(qū)間內有兩個不等實根,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平面內的定點到定直線的距離等于,動圓過點且與直線相切,記圓心的軌跡為曲線.在曲線上任取一點,過的垂線,垂足為.

(1)求曲線的軌跡方程;

(2)記點到直線的距離為,且,求的取值范圍;

(3)判斷的平分線所在的直線與曲線的交點個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的離心率為,經過點過點的直線l與橢圓C相交于A,B兩點,且與橢圓C的左準線交于點N

求橢圓C的標準方程;

時,求直線l的方程;

,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中對一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵.將一塹堵沿其一頂點與相對的棱刨開,得到一個陽馬(底面是長方形,且有一條側棱與底面垂直的四棱錐)和一個鱉臑(四個面均為直角三角形的四面體).在如圖所示的塹堵中, , , ,則陽馬的外接球的表面積是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點.

1求證:MN⊥CD;

2若∠PDA=45°,求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中對一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵.將一塹堵沿其一頂點與相對的棱刨開,得到一個陽馬(底面是長方形,且有一條側棱與底面垂直的四棱錐)和一個鱉臑(四個面均為直角三角形的四面體).在如圖所示的塹堵中, , , ,則陽馬的外接球的表面積是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角坐標系中,圓軸負半軸交于點,過點 的直線分別與圓交于,兩點.

1,,求的面積;

(2)過點作圓O的兩條切線,切點分別為E,F,求;

3,求證直線過定點.

查看答案和解析>>

同步練習冊答案