15.已知函數(shù)f(x)=$\frac{{e}^{x}}{1+a{x}^{2}}$
(1)當(dāng)a=$\frac{4}{3}$時(shí),求函數(shù)f(x)的極值;
(2)若f(x)為R上的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)求出函數(shù)的導(dǎo)數(shù),a=0時(shí),不合題意,a≠0時(shí),結(jié)合二次函數(shù)的性質(zhì)求出a的范圍即可.

解答 解:(1)a=$\frac{4}{3}$時(shí),f(x)=$\frac{{e}^{x}}{1+{\frac{4}{3}x}^{2}}$,
f′(x)=$\frac{{3e}^{x}(2x-3)(2x-1)}{{(3+{4x}^{2})}^{2}}$,
令f′(x)>0,解得:x>$\frac{3}{2}$或x<$\frac{1}{2}$,
令f′(x)<0,解得:$\frac{1}{2}$<x<$\frac{3}{2}$,
∴f(x)在(-∞,$\frac{1}{2}$)遞增,在($\frac{1}{2}$,$\frac{3}{2}$)遞減,在($\frac{3}{2}$,+∞)遞增,
∴f(x)極大值=f($\frac{1}{2}$)=$\frac{3\sqrt{e}}{4}$,f(x)極小值=f($\frac{3}{2}$)=$\frac{e\sqrt{e}}{4}$;
(2)f′(x)=$\frac{{e}^{x}({ax}^{2}-2ax+1)}{{(1+{ax}^{2})}^{2}}$,
a=0時(shí),f′(x)>0,f(x)遞增,符合題意,
a≠0時(shí),若f(x)為R上的單調(diào)函數(shù),
只需函數(shù)g(x)=ax2-2ax+1和x軸的交點(diǎn)最多是1個(gè),
故△=4a2-4a≤0,解得:0≤a≤1,
綜上:0≤a≤1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.一物體的運(yùn)動(dòng)方程為s=7t2+8,則其在t=$\frac{1}{14}$時(shí)的瞬時(shí)速度為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.將函數(shù)y=sin3x的圖象向右平移$\frac{π}{12}$個(gè)單位所得函數(shù)的解析式為y=sin(3x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=cos2ωx+$\sqrt{3}$sinωxcosωx(ω>0)的周期為π.
(Ⅰ)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)y=f(x)的值域;
(Ⅱ)已知△ABC的內(nèi)角A,B,C對(duì)應(yīng)的邊分別為a,b,c,若f($\frac{A}{2}$)=1,且a=4,b+c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=4cosωx•sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間[0,$\frac{π}{2}$]上的單調(diào)性;
(3)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),關(guān)于x的方程f(x)=a 恰有兩個(gè)不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若a,b在區(qū)間(0,1)內(nèi),則橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)與直線l:x+y=1在第一象限內(nèi)有兩個(gè)不同的交點(diǎn)的概率為1-$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.函數(shù)y=$\left\{\begin{array}{l}2x,0≤x≤4\\ 8,4<x≤8\\ 2(12-x),8<x≤12\end{array}$,填補(bǔ)方框內(nèi)的內(nèi)容完成函數(shù)的函數(shù)值的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知全集U={0,1,2,3,4,5,6,7},集合A={0,1,3,6},集合B={2,5,6,7},則(∁UB)∪A=( 。
A.{0,1,2,3,4,5,6,7}B.{6}C.{2,4,5,6,7}D.{0,1,3,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.將五進(jìn)制數(shù)44轉(zhuǎn)化為二進(jìn)制數(shù),結(jié)果是11000(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案