已知橢圓
x2
4
+
y2
3
=1
的左、右焦點(diǎn)分別為F1、F2,過(guò)橢圓的右焦點(diǎn)作一條直線l交橢圓于點(diǎn)P、Q,則△F1PQ內(nèi)切圓面積的最大值是( 。
分析:因?yàn)槿切蝺?nèi)切圓的半徑與三角形周長(zhǎng)的乘積是面積的2倍,且△F1PQ的周長(zhǎng)是定值8,所以只需求出△F1PQ面積的最大值.故可求△F1PQ內(nèi)切圓面積的最大值.
解答:解:因?yàn)槿切蝺?nèi)切圓的半徑與三角形周長(zhǎng)的乘積是面積的2倍,且△F1PQ的周長(zhǎng)是定值8,所以只需求出△F1PQ面積的最大值.
設(shè)直線l方程為x=my+1,與橢圓方程聯(lián)立得(3m2+4)y2+6my-9=0,
設(shè)P(x1,y1),Q(x2,y2),則y1+y2=-
6m
3m2+4
y1y2=-
9
3m2+4
,
于是SF1PQ=
1
2
|F1F2|•|y1-y2|=
(y1+y2)2-4y1y2
=12
m2+1
(3m2+4)2

因?yàn)?span id="fyw8fy3" class="MathJye">
m2+1
(3m2+4)2
=
1
9m2+15+
1
m2+1
=
1
9m2+9+
1
m2+1
+6
1
16

SF1PQ≤ 3
所以內(nèi)切圓半徑r=
2SF1PQ
8
3
4
,
因此其面積最大值是
9
16
π

故選D.
點(diǎn)評(píng):本題以橢圓為載體,考查直線與橢圓的位置關(guān)系,考查面積的最值,解題的關(guān)鍵是轉(zhuǎn)化為求△F1PQ面積的最大值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓
x24
+y2=1
的左、右兩個(gè)頂點(diǎn)分別為A,B,直線x=t(-2<t<2)與橢圓相交于M,N兩點(diǎn),經(jīng)過(guò)三點(diǎn)A,M,N的圓與經(jīng)過(guò)三點(diǎn)B,M,N的圓分別記為圓C1與圓C2
(1)求證:無(wú)論t如何變化,圓C1與圓C2的圓心距是定值;
(2)當(dāng)t變化時(shí),求圓C1與圓C2的面積的和S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
4
+y2=1
,過(guò)E(1,0)作兩條直線AB與CD分別交橢圓于A,B,C,D四點(diǎn),已知kABkCD=-
1
4

(1)若AB的中點(diǎn)為M,CD的中點(diǎn)為N,求證:①kOMkON=-
1
4
為定值,并求出該定值;②直線MN過(guò)定點(diǎn),并求出該定點(diǎn);
(2)求四邊形ACBD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓
x2
4
+y2=1
,弦AB所在直線方程為:x+2y-2=0,現(xiàn)隨機(jī)向橢圓內(nèi)丟一粒豆子,則豆子落在圖中陰影范圍內(nèi)的概率為
π-2
π-2

(橢圓的面積公式S=π•a•b,其中a是橢圓長(zhǎng)半軸長(zhǎng),b是橢圓短半軸長(zhǎng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•朝陽(yáng)區(qū)三模)已知橢圓
x2
4
+y2=1
的焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓上一點(diǎn),且∠F1PF2=90°,則點(diǎn)P的縱坐標(biāo)可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x24
+y2=1
,過(guò)點(diǎn)M(-1,0)作直線l交橢圓于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)求AB中點(diǎn)P的軌跡方程;
(2)求△OAB面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案