已知函數(shù)f(x)=(x2-3x+3)ex,設(shè)t>-2,函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù)時,t的取值范圍是________.
(-2,0]
因為f′(x)=(x2-3x+3)·ex+(2x-3)·ex=x(x-1)·ex.
由f′(x)>0得x>1或x<0;
由f′(x)<0得0<x<1,
所以f(x)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.
要使f(x)在[-2,t]上為單調(diào)函數(shù),則-2<t≤0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)處取得極值,對,恒成立,求實數(shù)的取值范圍;
(3)當時,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)
設(shè)函數(shù)
,求曲線處的切線方程;
討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù) 
(1) 當時,求函數(shù)的極值;
(2)若,證明:在區(qū)間內(nèi)存在唯一的零點;
(3)在(2)的條件下,設(shè)在區(qū)間內(nèi)的零點,判斷數(shù)列的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)證明函數(shù)上是增函數(shù);
(2)用反證法證明方程沒有負數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1) 當時,討論的單調(diào)性;
(2)設(shè),當若對任意存在 使求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=+lnx,若函數(shù)f(x)在[1,+∞)上為增函數(shù),則正實數(shù)a的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)已知函數(shù)的圖象在點處的切線垂直于軸.
(1)求實數(shù)的值;
(2)求的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=ln x-ax,g(x)=ex-ax,其中a為實數(shù).若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案