3.已知數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,2a7-a8=5,則S11=55.

分析 設(shè)等差數(shù)列公差為d,根據(jù)a7+d=a8帶入2a7-a8=5,可得a6=5,S11=$\frac{{a}_{1}+{a}_{11}}{2}×11=\frac{2{a}_{6}}{2}×11$可得答案.

解答 解:{an}為等差數(shù)列,設(shè)等差數(shù)列公差為d,a7+d=a8
帶入2a7-a8=5,可得a6=5,
那么S11=$\frac{{a}_{1}+{a}_{11}}{2}×11=\frac{2{a}_{6}}{2}×11$=55.
故答案為:55.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法錯(cuò)誤的個(gè)數(shù)是( 。
①在線性回歸模型y=bx+a+e中,預(yù)報(bào)變量y除了受解釋變量x的影響外,可能還受到其它因素的影響,這些因素會(huì)導(dǎo)致隨機(jī)誤差e的產(chǎn)生
②在線性回歸模型y=bx+a+e中,隨機(jī)誤差e是由于計(jì)算不準(zhǔn)確造成的,可以通過精確計(jì)算避免隨機(jī)誤差e的產(chǎn)生
③在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說某人吸煙,那么他有99%的可能患有肺病
④在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,若K2從統(tǒng)計(jì)量中求出有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有1%的可能性使得判斷出現(xiàn)錯(cuò)誤
⑤在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,若K2的觀測值k>6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={y|y=2x,x>0},N={x|2x-x2≥0},則M∩N為( 。
A.(1,2]B.(1,2)C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知不等式$\sqrt{1-{x^2}}>x+b$在$[{-1,\frac{1}{2}})$上恒成立,則b的取值范圍是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若函數(shù)f(x)定義域?yàn)镽,滿足對(duì)任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2)有,則稱f(x)為“V形函數(shù)”;若函數(shù)g(x)定義域?yàn)镽,g(x)恒大于0,且對(duì)任意x1,x2∈R,有l(wèi)g[g(x1+x2)]≤lg[g(x1)]+lg[g(x2)],則稱g(x)為“對(duì)數(shù)V形函數(shù)”:
(1)當(dāng)f(x)=x2時(shí),判斷函數(shù)f(x)是否為V形函數(shù),并說明理由;
(2)當(dāng)g(x)=x2+2時(shí),證明:g(x)是對(duì)數(shù)V形函數(shù);
(3)若f(x)是V形函數(shù),且滿足對(duì)任意x∈R,有f(x)≥2,問f(x)是否為對(duì)數(shù)V形函數(shù)?如果是,請(qǐng)加以證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

,的前項(xiàng)和.在中,正數(shù)的個(gè)數(shù)是( )

A.25 B.50 C.75 D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a=${∫}_{0}^{1}$(x2-1)dx,b=1-log23,c=cos$\frac{5π}{6}$,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.c<a<bC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.小明和小紅各自擲一顆均勻的正方體骰子,兩人相互獨(dú)立地進(jìn)行,則小明擲出的點(diǎn)數(shù)不大于2或小紅擲出的點(diǎn)數(shù)不小于3的概率為$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知不等式的解集為.則( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案