已知正三棱錐P-ABC的底面邊長為6,側(cè)棱長為.有一動點M在側(cè)面PAB內(nèi),它到頂點P的距離與到底面ABC的距離比為

(1)求動點M到頂點P 的距離與它到邊AB的距離之比;
(2)在側(cè)面PAB所在平面內(nèi)建立為如圖所示的直角坐標(biāo)系,求動點M的軌跡方程.
【答案】分析:(1)作PO⊥底面ABC于O點,則O為△ABC的中心,連接CO并延長交AB于D,連PD,則∠PDC為側(cè)面與底面所成二面角的平面角,作MN⊥底面于N,作NQ⊥AB于Q,連MQ,則∠MQN為側(cè)面與底面所成二面角的平面角,從而MQ=2MN,即可求出M到頂點P的距離與它到邊AB的距離之比.
(2)設(shè)M點的坐標(biāo)為(x,y),根據(jù)建立等式關(guān)系,求出點M的軌跡,然后求出x和y的范圍,從而求出所求.
解答:解:

(1)作PO⊥底面ABC于O點,則O為△ABC的中心,連接CO并延長交AB于D,連PD,則∠PDC為側(cè)面與底面所成二面角的平面角.∵AB=6,∴∴∠PDO=30°----------------------------4′
作MN⊥底面于N,作NQ⊥AB于Q,連MQ,則∠MQN為側(cè)面與底面所成二面角的平面角,∴∠MQN=30°.
于是,MQ=2MN,有題意,∴
即M到頂點P的距離與它到邊AB的距離之比為---------------------------8′
(2)設(shè)M點的坐標(biāo)為(x,y),由,P(0,2)得:,化簡得:x2-y2-4y+4=0------12′
直線PB的方程為,由,解得
綜上,M點的軌跡方程為x2-y2-4y+4=0-----------------------14′
點評:本題主要考查了棱錐的結(jié)構(gòu)特征以及軌跡方程,同時考查了計算能力和推理論證的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC的側(cè)棱長為2,底面邊長為1,平行四邊形EFGH的四個頂點分別在棱AB、BC、CP、PA上,則
1
EF
+
1
FG
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC的底面邊長為6,側(cè)棱長為
13
.有一動點M在側(cè)面PAB內(nèi),它到頂點P的距離與到底面ABC的距離比為2
2
:1

精英家教網(wǎng)
(1)求動點M到頂點P 的距離與它到邊AB的距離之比;
(2)在側(cè)面PAB所在平面內(nèi)建立為如圖所示的直角坐標(biāo)系,求動點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省四星高中高三數(shù)學(xué)小題訓(xùn)練(7)(解析版) 題型:解答題

已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為    cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省蘇州市高考信息數(shù)學(xué)試卷(正題)(解析版) 題型:解答題

已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為    cm2

查看答案和解析>>

同步練習(xí)冊答案