【題目】設(shè)分別是橢圓的左、右焦點,已知橢圓的長軸為是橢圓上一動點,的最大值為.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,為橢圓上一點,為坐標(biāo)原點,且滿足,其中,求的取值范圍.
【答案】(1);(2).
【解析】
(1)橢圓的長軸為可以直接求出,設(shè)出點的坐標(biāo),根據(jù)平面向量數(shù)量積的坐標(biāo)表示公式,結(jié)合的最大值為進行求解即可;
(2)設(shè)出直線的點斜式方程,將直線方程與橢圓方程聯(lián)立,設(shè)出兩點坐標(biāo),再設(shè)出的坐標(biāo),利用平面向量加法、平面向量共線的坐標(biāo)表示公式,結(jié)合一元二次方程根與系數(shù)關(guān)系求出點坐標(biāo),把點的坐標(biāo)代入橢圓方程中,根據(jù)的取值范圍,可以求出直線的斜率的取值范圍,結(jié)合兩點間距離公式求出的表達式,根據(jù)直線的斜率的取值范圍,結(jié)合換元法、配方法進行求解即可.
(1)因為橢圓的長軸為所以,設(shè)的坐標(biāo)為:,所以有
,兩焦點坐標(biāo)為:,因此
,所以
,
顯然當(dāng)時,有最大值,最大值為,因此橢圓方程為:;
(2)設(shè)直線的方程為:,因為,所以,將該直線方程與橢圓方程聯(lián)立得:,設(shè),所以有,因此,設(shè),
因為,所以有,
,把點坐標(biāo)代入橢圓方程中,得
,化簡得:,而,所以有
.
即,
顯然有,所以.
令,
因此,因為,所以,所以當(dāng),的最大值為;當(dāng)時,,所以的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的極值;
(Ⅱ)時,討論的單調(diào)性;
(Ⅲ)若對任意的恒有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高三年級100名學(xué)生的視力情況進行統(tǒng)計(如果兩眼視力不同,取較低者統(tǒng)計),得到如圖所示的頻率分布直方圖,已知從這100人中隨機抽取1人,其視力在的概率為.
(1)求a,b的值;
(2)若報考高校A專業(yè)的資格為:任何一眼裸眼視力不低于5.0,已知在中有的學(xué)生裸眼視力不低于5.0.現(xiàn)用分層抽樣的方法從和中抽取4名同學(xué),設(shè)這4人中有資格(僅考慮視力)考A專業(yè)的人數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最小值和最大值;
(2)當(dāng)時,討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標(biāo)著號碼1,另一個球標(biāo)著號碼2.現(xiàn)從A、B、C三個箱子中各摸出1個球.
(Ⅰ)若用數(shù)組中的分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組的所有情形,并回答一共有多少種;
(Ⅱ)如果請您猜測摸出的這三個球的號碼之和,猜中有獎.那么猜什么數(shù)獲獎的可能性最大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】最近幾年汽車金融公司發(fā)展迅猛,主要受益于監(jiān)管層面對消費進人門檻的降低,互聯(lián)網(wǎng)信貸消費的推廣普及,以及汽車銷售市場規(guī)模的擴張.如圖是2013﹣2017年汽車金融行業(yè)資產(chǎn)規(guī)模統(tǒng)計圖(單位:億元).
(1)以年份值2013,2014,…為橫坐標(biāo),汽車金融行業(yè)資產(chǎn)規(guī)模(單位:億元)為縱坐標(biāo),求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,預(yù)計2018年汽車金融行業(yè)資產(chǎn)規(guī)模(精確到億元).
附:回歸直線的斜率和截距的最小二乘估計公式分別為,(其中,為樣本平均值).
參考數(shù)據(jù):4.620×107,20154.619×107.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求在處的切線方程;
(2)令,已知函數(shù)有兩個極值點,且,
①求實數(shù)的取值范圍;
②若存在,使不等式對任意(取值范圍內(nèi)的值)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)購已經(jīng)成為一種新型的購物方式,2018年天貓雙11,僅1小時47分鐘成交額超過1000億元,比2017年達到1000億元的時間縮短了7個小時,為了研究市民對網(wǎng)購的依賴性,從A城市16﹣59歲人群中抽取一個容量為100的樣本,得出下列2×2列聯(lián)表,其中16﹣39歲為青年,40﹣59歲為中年,當(dāng)日消費金額超過1000元為消費依賴網(wǎng)購,否則為消費不依賴網(wǎng)購.
依賴網(wǎng)購 | 不依賴網(wǎng)購 | 小計 | |
青年(16﹣39歲) | 40 | 20 | |
中年(40﹣59歲) | 20 | 20 | |
小計 |
(1)完成2×2列聯(lián)表,計算X2值,并判斷是否有95%的把握認(rèn)為網(wǎng)購依賴和年齡有關(guān)?
(2)把樣本中的頻率當(dāng)作概率,隨機從A城市中選取5人,其中依賴網(wǎng)購的人數(shù)為隨機變量X,求隨機變量X的分布列及期望(附:X2,當(dāng)X2>3.841時,有95%的把握說事件A與B有關(guān),當(dāng)X2≤3.841時,沒有95%的把握說事件A與B有關(guān))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對該關(guān)鍵詞的搜索次數(shù)越多,對該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個關(guān)鍵詞的搜索指數(shù)變化的走勢圖.
根據(jù)該走勢圖,下列結(jié)論正確的是( )
A. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化
B. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱
C. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差
D. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com