在△ABC中,已知AB邊上的高所在的直線方程為l1:x+3y+2=0,∠C的平分線所在的直線方程為l2:y-2=0,且點A的坐標為(0,-2).求:
(1)點C的坐標;
(2)直線AB的方程;
(3)直線BC的方程.
考點:待定系數(shù)法求直線方程,兩直線的夾角與到角問題
專題:直線與圓
分析:(1)由題意得,點C是直線l1與l2的交點,聯(lián)立方程組
x+3y+2=0
y-2=0
,解得即可;
(2)直線l1的方程為:x+3y+2=0,可得kl1=-
1
3
,由于直線AB垂直l1,可得kAB=3.利用點斜式即可得出;
(3)由于∠C的平分線所在直線方程l2:y-2=0,可得直線BC與直線AC的傾斜角互補,即kBC=-kAC,利用斜率計算公式及其點斜式即可得出.
解答: 解:(1)由題意得,點C是直線l1與l2的交點,
聯(lián)立方程組
x+3y+2=0
y-2=0
,
解得
x=-8
y=2

∴C(-8,2).
(2)直線l1的方程為:x+3y+2=0,
kl1=-
1
3
,
又∵直線AB垂直l1,
∴kAB=3.
又A(0,-2),
∴直線AB的方程為:y-(-2)=3(x-0),
即3x-y-2=0.
(3)∵∠C的平分線所在直線方程l2:y-2=0,
∴直線BC與直線AC的傾斜角互補,即kBC=-kAC,
又kAC=
-2-2
0-(-8)
=-
1
2
,
∴kBC=
1
2
,
∴直線BC的方程為y-2=
1
2
(x+8),即x-2y+12=0.
點評:本題考查了直線的交點、相互垂直的直線斜率之間的關(guān)系、斜率計算公式及其點斜式、相互對稱的直線斜率之間的關(guān)系,考查了計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

3個班分別從5個風景點處選擇一處游覽,不同的選法種數(shù)是(  )
A、53
B、35
C、A53
D、C53

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2sin(
π
6
-2x)(x∈[0,π])的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=|tanx|的最小正周期為(  )
A、
π
2
B、π
C、2π
D、無最小正周期

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)條件p:x2-6x+8≤0,條件q:(x-a)(x-a-1)≤0,若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)有兩組平行線,一組6條,另一組4條,這兩組平行線相交,可以構(gòu)成的平行四邊形個數(shù)是
 
(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結(jié)論錯誤的是( 。
A、若a>|b|,則a2>b2
B、
2
+
6
3
+
5
C、(x-3)2>(x-2)(x-4)
D、2x+2-x≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1,則
2
1
f(x)dx的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=tan
x
2
+
16-x2
,則函數(shù)的定義域是
 

查看答案和解析>>

同步練習冊答案