4.某地實(shí)行階梯電價(jià),以日歷年(每年1月1日至12月31日)為周期執(zhí)行居民階梯電價(jià),即:一戶居民用戶全年不超過2880度(1度=千瓦時(shí))的電量,執(zhí)行第一檔電價(jià)標(biāo)準(zhǔn),每度電0.4883元;全年超過2880度至4800度之間的電量,執(zhí)行第二檔電價(jià)標(biāo)準(zhǔn),每度電0.5383元;全年超過4800度以上的電量,執(zhí)行第三檔電價(jià)標(biāo)準(zhǔn),每度電0.7883元.下面是關(guān)于階梯電價(jià)的圖形表示,其中正確的有(參考數(shù)據(jù):0.4883元/度×2880度=1406.30元,0.5383元/度×(4800-2880)度+1406.30元=2439.84元.)(  )
A.①②B.②③C.①③D.①②③

分析 通過居民階梯電價(jià)可知圖象①不正確,通過記用電量為x度可知電費(fèi)f(x)的表達(dá)式,進(jìn)而可知②③均正確.

解答 解:依題意,當(dāng)全年用電量在2880度至4800度之間時(shí),電價(jià)分兩段,
即全年電量中的2880度(1度=千瓦時(shí))的每度電0.4883元、超出部分按每度電0.5383元計(jì)算,
故圖象①不正確;
記用電量為x度,電費(fèi)為f(x)元/年,
當(dāng)0≤x≤2880,f(x)=0.4883x,
當(dāng)2880<x≤4800,f(x)=0.4883×28880+0.5383×(x-2880)=1406.3+0.5383(x-2880),
當(dāng)x>4800,f(x)=2439.84+0.7883(x-4800),x>4800
故②③均正確;
綜上所述,正確的是②③,
故選:B.

點(diǎn)評 本題考查函數(shù)模型的選擇與應(yīng)用,考查分類討論的思想,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某校新生分班,現(xiàn)有A,B,C三個(gè)不同的班,兩名關(guān)系不錯(cuò)的甲和乙同學(xué)會被分到這三個(gè)班,每個(gè)同學(xué)分到各班的可能性相同,則這兩名同學(xué)被分到同一個(gè)班的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{5}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C:y2=2px(p>0)與橢圓C':$\frac{x^2}{4}$+$\frac{{15{y^2}}}{16}$=1相交所得的弦長為2p.
(Ⅰ)求拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)A,B是C上異于原點(diǎn)O的兩個(gè)不同點(diǎn),直線OA和OB的傾斜角分別為α和β,當(dāng)α,β變化且α+β為定值θ(tanθ=2)時(shí),證明:直線AB恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.命題“?x≥1,x>2”的否定形式是?x≥1,x≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)是定義在區(qū)間(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足xf′(x)+2f(x)>0,則不等式(x+2015)2f(x+2015)<16f(4)的解集為(  )
A.{x|x>-2015}B.{x|x<-2015}C.{x|-2015<x<-2011}D.{x|-2011<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線2x+my=2m-4與直線mx+2y=m-2平行,則m的值為( 。
A.m=-2B.m=±2C.m=0D.m=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.計(jì)算sin105°-cos105°=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x2-6x+5≤0},$B=\{x|y=\sqrt{x-3}\}$,A∩B=( 。
A.[1,3]B.[1,5]C.[3,5]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若雙曲線$E:\frac{x^2}{a^2}-{y^2}=1(a>0)$的離心率等于$\sqrt{2}$,直線y=kx-1與雙曲線E的右支交于A、B兩點(diǎn).
(1)求k的取值范圍;
(2)若$|{AB}|=6\sqrt{3}$,點(diǎn)c是雙曲線上一點(diǎn),且$\overrightarrow{OC}=m(\overrightarrow{OA}+\overrightarrow{OB})$,求k、m的值.

查看答案和解析>>

同步練習(xí)冊答案