分析 (1)先求出該顧客不中獎的概率,由此利用對立事件概率計算公式能求出中獎的概率.
(2)由題意知X的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.
解答 解:(1)該顧客不中獎的概率為P′=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
∴中獎的概率為P=1-$\frac{1}{3}$=$\frac{2}{3}$.
(2)由題意知X的可能取值為0,1,2,
P(X=0)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
P(X=1)=$\frac{{C}_{4}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{8}{15}$,
P(X=2)=$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}$=$\frac{2}{15}$,
∴X的分布列為:
X | 0 | 1 | 2 |
P | $\frac{1}{3}$ | $\frac{8}{15}$ | $\frac{2}{15}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1+\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $2+\sqrt{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $6-4\sqrt{2}$ | B. | $6+4\sqrt{2}$ | C. | $4+6\sqrt{2}$ | D. | $4-6\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com