精英家教網(wǎng)如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
3
,BD=CD=1,另一個(gè)側(cè)面是正三角形.
(1)求證:AD⊥BC.
(2)求二面角B-AC-D的大小.
(3)在直線AC上是否存在一點(diǎn)E,使ED與面BCD成30°角?若存在,確定E的位置;若不存在,說(shuō)明理由.
分析:(1)方法一:根據(jù)三垂線定理可得:作AH⊥面BCD于H,連DH.由長(zhǎng)度計(jì)算可得:BHCD是正方形,所以DH⊥BC,則AD⊥BC.
方法二:證明異面直線垂直,也可以先證明直線與平面垂直:取BC的中點(diǎn)O,連AO、DO,則有AO⊥BC,DO⊥BC,所以BC⊥面AOD
(2)二面角的度量關(guān)鍵在于作出它的平面角,常用的方法就是三垂線定理.作BM⊥AC于M,作MN⊥AC交AD于N,則∠BMN就是二面角B-AC-D的平面角,再根據(jù)余弦定理即可求得cos∠BMN的大。
(3)直線與平面所成的角,需先作出平面的垂線:設(shè)E是所求的點(diǎn),作EF⊥CH于F,連FD.則EF∥AH,所以EF⊥面BCD,∠EDF就是ED與面BCD所成的角,則∠EDF=30°.
解答:精英家教網(wǎng)解:(1)方法一:作AH⊥面BCD于H,連DH.
AB⊥BD?HB⊥BD,又AD=
3
,BD=1
∴AB=
2
=BC=AC
∴BD⊥DC
又BD=CD,則BHCD是正方形,
則DH⊥BC∴AD⊥BC
方法二:取BC的中點(diǎn)O,連AO、DO
則有AO⊥BC,DO⊥BC,∴BC⊥面AOD
∴BC⊥AD
(2)作BM⊥AC于M,作MN⊥AC交AD于N,則∠BMN就是二面角B-AC-D的平面角,因?yàn)锳B=AC=BC=
2

∵M(jìn)是AC的中點(diǎn),則BM=
6
2
,MN=
1
2
CD=
1
2
,BN=
1
2
AD=
3
2
,由余弦定理可求得cos∠BMN=
6
3

∴∠BMN=arccos
6
3

(3)設(shè)E是所求的點(diǎn),作EF⊥CH于F,連FD.則EF∥AH,
∴EF⊥面BCD,∠EDF就是ED與面BCD所成的角,
則∠EDF=30°.
設(shè)EF=x,易得AH=HC=1,則CF=x,F(xiàn)D=
1+x2
,
∴tan∠EDF=
EF
FD
=
x
1+x2
=
3
3

解得x=
2
2

則CE=
2
x=1
故線段AC上存在E點(diǎn),且CE=1時(shí),ED與面BCD成30°角.
點(diǎn)評(píng):本小題主要考查棱錐的結(jié)構(gòu)特征,二面角和線面關(guān)系等基本知識(shí),同時(shí)考查空間想象能力和推理、運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
2
,動(dòng)點(diǎn)D在線段AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當(dāng)點(diǎn)D運(yùn)動(dòng)到線段AB的中點(diǎn)時(shí),求二面角D-CO-B的大;
(Ⅲ)當(dāng)CD與平面AOB所成角最大時(shí),求三棱錐C-OBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,點(diǎn)E在BC上,且AE⊥AC.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求點(diǎn)B到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BOC中,AO⊥面BOC,二面角B-AO-C是直二面角,OB=OC,∠OAB=
π6
,斜邊AB=4,動(dòng)點(diǎn)D在斜邊AB上.
(1)求證:平面COD⊥平面AOB;
(2)當(dāng)D為AB的中點(diǎn)時(shí),求:異面直線AO與CD所成角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
3
,BD=CD=1,另一個(gè)側(cè)面是正三角形
(1)求證:AD⊥BC
(2)求二面角B-AC-D的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案