科目:高中數學 來源: 題型:
如圖,已知拋物線,過點任作一直線與相交于兩點,過點作軸的平行線與直線相交于點(為坐標原點).
證明:動點在定直線上;
作的任意一條切線(不含軸)與直線相交于點,與(1)中的定直線相交于點,證明:為定值,并求此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
用代表紅球,代表藍球,代表黑球,由加法原理及乘法原理,從1個紅球和1個籃球中取出若干個球的所有取法可由的展開式表示出來,如:“1”表示一個球都不取、“”表示取出一個紅球,面“”用表示把紅球和籃球都取出來.以此類推,下列各式中,其展開式可用來表示從5個無區(qū)別的紅球、5個有區(qū)別的黑球中取出若干個球,且所有的籃球都取出或都不取出的所有取法的是
B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com