分析 (1)連接BD,證明AD⊥PO,AD⊥BO,推出AD⊥平面POB,然后證明面POB⊥平面PAD.
(2)連接AC,交OB于點(diǎn)N,連接MN,證明以PA∥MN,以O(shè)為原點(diǎn),直線OA,OB,OP分別為x,y,z軸建立空間直角坐標(biāo)系O-xyz,求出平面BOM的法向量,平面OBC的一個(gè)法向量,利用空間向量的數(shù)量積求解二面角M-OB-C的余弦值.
解答 證明:(1)連接BD,因?yàn)榈酌鍭BCD是菱形,∠BAD=60°,所以△ABD是正三角形,…(1分)
因?yàn)镺為AD邊的中點(diǎn),PA=PD,
所以AD⊥PO,AD⊥BO,PO∩BO=O,
所以AD⊥平面POB,…(3分)
因?yàn)锳D?平面PAD,
所以平面POB⊥平面PAD. …(5分)
(2)解:連接AC,交OB于點(diǎn)N,連接MN,
因?yàn)镻A∥平面MOB,所以PA∥MN,…(6分)
易知點(diǎn)N為ABD的重心,所以$AN=\frac{1}{3}AC$,
故$PM=\frac{1}{3}PC$,…(7分)
因?yàn)?AB=2\sqrt{3}$,$PA=PD=\sqrt{7}$,
所以O(shè)B=3,OP=2,因?yàn)?PB=\sqrt{13}$,
所以∠POB=90°,即OP⊥OB,
以O(shè)為原點(diǎn),直線OA,OB,OP分別為x,y,z軸建立空間直角坐標(biāo)系O-xyz,則O(0,0,0),B(0,3,0),$C(-2\sqrt{3},3,0)$,P(0,0,2),則$\overrightarrow{OB}=(0,3,0)$,$\overrightarrow{PC}=(-2\sqrt{3},3,-2)$,
所以$\overrightarrow{OM}=\overrightarrow{OP}+\overrightarrow{PM}$=$\overrightarrow{OP}+\frac{1}{3}\overrightarrow{PC}$=$(-\frac{{2\sqrt{3}}}{3},1,\frac{4}{3})$,…(9分)
設(shè)$\overrightarrow m=(x,y,z)$為平面BOM的法向量,由$\overrightarrow m⊥\overrightarrow{OB}$,$\overrightarrow m⊥\overrightarrow{OM}$可求得$\overrightarrow m=(2,0,\sqrt{3})$,
易知,$\overrightarrow n=(0,0,1)$為平面OBC的一個(gè)法向量,…(10分)
所以$cos<\overrightarrow m,\overrightarrow n>=\frac{{\sqrt{3}}}{{\sqrt{7}}}=\frac{{\sqrt{21}}}{7}$,…(11分)
因?yàn)槎娼荕-OB-C為銳角,所以二面角M-OB-C的余弦值為$\frac{{\sqrt{21}}}{7}$.…(12分)
點(diǎn)評(píng) 本題考查二面角的平面角的求法,空間向量的應(yīng)用,直線與平面平行于垂直的判斷,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$2\sqrt{5}$,+∞) | B. | [$\frac{9}{2}$,+∞) | C. | [$\frac{14}{3}$,+∞) | D. | (-∞,$2\sqrt{5}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=$\frac{π}{6}$ | B. | x=$\frac{π}{3}$ | C. | x=$\frac{π}{12}$ | D. | x=$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {0} | C. | [0,1] | D. | (-∞,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com