已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象過(guò)定點(diǎn)A且點(diǎn)A又在函數(shù)上,則g-1(x)=________
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:山東省泰安市2012屆高三上學(xué)期期中考試數(shù)學(xué)文科試題 題型:044
已知函數(shù)g(x)=-k僅有一個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時(shí),求曲線(xiàn)y=f(x)在(1,f(1))點(diǎn)處的切線(xiàn)的方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(3)已知函數(shù)g(x)=f(x)+有三個(gè)互不相同的零點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知x>,函數(shù)f(x)=x2,h(x)=2elnx(e為自然常數(shù)).
(1)求證:f(x)≥h(x);
(2)若f(x)≥h(x)且g(x)≤h(x)恒成立,則稱(chēng)函數(shù)h(x)的圖像為函數(shù)f(x),g(x)的“邊界”.已知函數(shù)g(x)=-4x2+px+q(p,q∈R),試判斷“函數(shù)f(x),g(x)以函數(shù)h(x)的圖像為邊界”和“函數(shù)f(x),g(x)的圖像有且僅有一個(gè)公共點(diǎn)”這兩個(gè)條件能否同時(shí)成立?若能同時(shí)成立,請(qǐng)求出實(shí)數(shù)p、q的值;若不能同時(shí)成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)g(x)=ax3+bx2+cx(a∈R且a≠0),g(-1)=0,且g(x)的導(dǎo)函數(shù)f(x)滿(mǎn)足f(0)f(1)≤0.設(shè)x1、x2為方程f(x)=0的兩根.
(1)求的取值范圍;
(2)若當(dāng)|x1-x2|最小時(shí),g(x)的極大值比極小值大,求g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高一第二學(xué)期第一次月考數(shù)學(xué)試 題型:解答題
已知函數(shù)f(x)=3x2+bx+c,不等式f(x)>0的解集為(-∞,-2)∪(0,+∞).
(1) 求函數(shù)f(x)的解析式;
(2) 已知函數(shù)g(x)=f(x)+mx-2在(2,+∞)上單調(diào)增,求實(shí)數(shù)m的取值范圍;
(3) 若對(duì)于任意的x∈[-2,2],f(x)+n≤3都成立,求實(shí)數(shù)n的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com