已知函數(shù)f(x)=mln(x-1)+(m-1)x,m∈R是常數(shù).
(1)若m=
1
2
,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)存在最大值,求m的取值范圍;
(3)若對(duì)函數(shù)f(x)定義域內(nèi)任意x1、x2(x1≠x2),
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立,求m的取值范圍.
分析:(1)先確定函數(shù)的定義域,然后求出函數(shù)的導(dǎo)函數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,即可求出函數(shù)的單調(diào)區(qū)間.
(2)根據(jù)函數(shù)的增減區(qū)間確定函數(shù)的最大值,從而解出m的取值范圍.
(3)由
f(x1)+f(x2)
2
>f(
x1+x2
2
)
mln(x1-1)+mln(x2-1)
2
>mln(
x1+x2
2
-1)
,利用基本不等式得出
x1+x2
2
-1=
(x1-1)+(x2-1)
2
(x1-1)(x2-1)

再利用對(duì)數(shù)函數(shù)的性質(zhì),得出所以ln(
x1+x2
2
-1)>ln
(x1-1)(x2-1)
,從而m只需小于0即可.
解答:解:(1)f(x)的定義域?yàn)椋?,+∞)…(1分)
m=
1
2
時(shí),f(x)=
1
2
ln(x-1)-
1
2
x
,f/(x)=
1
2(x-1)
-
1
2
=
2-x
2(x-1)
…(2分)
解f′(x)=0得x=2.
當(dāng)x∈(1,2)時(shí),f′(x)>0,即f(x)在(1,2)單調(diào)遞增…(3分);
當(dāng)x∈(2,+∞)時(shí),f′(x)<0,即f(x)在(2,+∞)單調(diào)遞減…(4分).
(2)f/(x)=
m
x-1
+(m-1)=
(m-1)x+1
x-1

若m≥1,則f′(x)>0,f(x)單調(diào)遞增,不存在最大值…(5分)
若m≤0,則f′(x)<0,f(x)單調(diào)遞減,不存在最大值…(6分)
若0<m<1,由f′(x)=0得x=
1
1-m
,
當(dāng)x∈(1,
1
1-m
)
時(shí),f′(x)>0,f(x)單調(diào)遞增,
當(dāng)x∈(
1
1-m
,+∞)
時(shí),f′(x)<0,f(x)單調(diào)遞減…(8分),
所以f(x)在x=
1
1-m
取得最大值,所求m的取值范圍為(0,1)…(9分)
(3)由
f(x1)+f(x2)
2
>f(
x1+x2
2
)
mln(x1-1)+mln(x2-1)
2
>mln(
x1+x2
2
-1)
…(10分),
依題意x1-1>0,x2-1>0且x1-1≠x2-1,所以
x1+x2
2
-1=
(x1-1)+(x2-1)
2
(x1-1)(x2-1)
…(11分),
y=lnx是增函數(shù),所以ln(
x1+x2
2
-1)>ln
(x1-1)(x2-1)
…(12分)
=
1
2
ln[(x1-1)(x2-1)]=
1
2
[ln(x1-1)+ln(x2-1)]
…(13分),
所求m的取值范圍為(-∞,0)…(14分).
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及函數(shù)單調(diào)區(qū)間等有關(guān)基礎(chǔ)知識(shí),應(yīng)用導(dǎo)數(shù)研究函數(shù)單調(diào)性的方法及推理和運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過(guò)點(diǎn)A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項(xiàng)和,n∈N*
(1)求Sn及an;
(2)若數(shù)列{cn}滿(mǎn)足cn=6nan-n,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m(x+
1
x
)的圖象與h(x)=(x+
1
x
)+2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng).
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
,
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對(duì)稱(chēng)軸間的距離不小于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a=
3
,b+c=3,當(dāng)ω最大時(shí),f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下兩題任選一題:(若兩題都作,按第一題評(píng)分)
(一):在極坐標(biāo)系中,圓ρ=2cosθ的圓心到直線(xiàn)θ=
π
3
(ρ∈R)的距離
3
2
3
2
;
(二):已知函數(shù)f(x)=m-|x-2|,m∈R,當(dāng)不等式f(x+2)≥0的解集為[-2,2]時(shí),實(shí)數(shù)m的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案