已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),給出以下命題:
①當(dāng)時(shí),; ②函數(shù)有五個(gè)零點(diǎn);
③若關(guān)于的方程有解,則實(shí)數(shù)的取值范圍是;
④對(duì)恒成立.
其中,正確命題的序號(hào)是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,先將邊長(zhǎng)為的正方形鐵皮的四個(gè)角各截去一個(gè)邊長(zhǎng)為的小正方形,然后沿虛線折成一個(gè)無(wú)蓋的長(zhǎng)方體盒子.設(shè)長(zhǎng)方體盒子的體積是,則關(guān)于的函數(shù)關(guān)系式為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
.小強(qiáng)和小華兩位同學(xué)約定下午在武榮公園籃球場(chǎng)見(jiàn)面,約定誰(shuí)先到后必須等10分鐘,這時(shí)若
另一人還沒(méi)有來(lái)就可以離開(kāi).如果小強(qiáng)是1:40分到達(dá)的,假設(shè)小華在1點(diǎn)到3點(diǎn)內(nèi)到達(dá),且
小華在 1點(diǎn)到3點(diǎn)之間何時(shí)到達(dá)是等可能的,則他們會(huì)面的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,棱柱ABCD-A1B1C1D1的底面ABCD為菱形,四邊形AA1C1C也為菱形
且∠A1AC=∠DAB=60o,平面AA1C1C⊥平面ABCD.(Ⅰ)證明:BD⊥AA1;
(Ⅱ)證明:平面AB1C∥平面DA1C1;
(Ⅲ)在棱CC1上是否存在點(diǎn)P,使得平面PDA1和平面DA1C1所成銳二面角的余弦值為?若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如果復(fù)數(shù)為純虛數(shù),那么實(shí)數(shù)的值為( ).
A.-2 B.1 C.2 D.1或 -2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù), .
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(Ⅲ)如果對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)(其中常數(shù)a,b∈R),是奇函數(shù).
(1)求的表達(dá)式;
(2)討論的單調(diào)性,并求在區(qū)間[1,2]上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com