函數(shù)f(x)=tan(2x-
π
3
)的單調(diào)遞增區(qū)間是
 
考點:正切函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)正切函數(shù)的單調(diào)性進行求解.
解答: 解:由kπ-
π
2
<2x-
π
3
<kπ+
π
2
,k∈Z,
解得
2
-
π
12
<x<
2
+
12
,
故函數(shù)的遞增區(qū)間為(
2
-
π
12
,
2
+
12
),k∈Z,
故答案為:(
2
-
π
12
,
2
+
12
),k∈Z
點評:本題主要考查函數(shù)單調(diào)區(qū)間的求解,根據(jù)正切函數(shù)的單調(diào)性的性質(zhì)是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

當x∈[-3,0]時,函數(shù)y=x2+2x+3的最小值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且b=3.已知向量
m
=(cos2
B
2
,sinB),
n
=(
3
,2),且
m
n

(1)若A=
12
,求邊c的值;
(2)求AC邊上高h的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinx+
3
cosx=
6
5
,則cos(x-
π
6
)=( 。
A、-
3
5
B、
3
5
C、-
4
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)畫出y=2x+2-x的圖象;
(2)畫出y=2x-2-x的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P為橢圓C上一點,F(xiàn)1,F(xiàn)2為橢圓的焦點,且|F1F2|=2
3
,若|PF1|與|PF2|的等差中項為|F1F2|,則橢圓C的標準方程為(  )
A、
x2
12
+
y2
9
=1
B、
x2
12
+
y2
9
=1
x2
9
+
y2
12
=1
C、
x2
9
+
y2
12
=1
D、
x2
48
+
y2
45
=1
x2
45
+
y2
48
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的反函數(shù)g(x)=3-log2(x+1),則f(-3)g(3)=( 。
A、63B、-63
C、64D、-64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=5sin(x+20°)-5sin(x+80°)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果實數(shù)x,y滿足(x-2)2+y2=3,那么
y
x
的最大值是( 。
A、
3
3
B、
3
2
C、
3
D、
1
2

查看答案和解析>>

同步練習冊答案