(本小題共13分)已知函數(shù).
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
解:(Ⅰ)當(dāng)時(shí),,.
,. ………3分
所以所求切線方程為即. ……5分
(Ⅱ).
令,得. ………7分
由于,,的變化情況如下表:
+ |
0 |
— |
0 |
+ |
|
單調(diào)增 |
極大值 |
單調(diào)減 |
極小值 |
單調(diào)增 |
所以函數(shù)的單調(diào)遞增區(qū)間是和. …………9分
要使在區(qū)間上單調(diào)遞增,
應(yīng)有 ≤ 或 ≥,
解得≤或≥. …………11分
又 且, …………12分
所以 ≤.
即實(shí)數(shù)的取值范圍 . …………13分
【解析】本題考查切線方程和函數(shù)的最值問(wèn)題?疾閷W(xué)生利用導(dǎo)數(shù)法解決問(wèn)題的能力.如果在點(diǎn)可導(dǎo),則曲線在點(diǎn)()處的切線方程為 注意:“過(guò)點(diǎn)的曲線的切線方程”與“在點(diǎn)處的切線方程”是不相同的,后者必為切點(diǎn),前者未必是切點(diǎn).本題的第一文是在點(diǎn)處,故直接求解即可;通過(guò)對(duì)函數(shù)求導(dǎo),分析函數(shù)的單調(diào)性,尋求函數(shù)的最值是常規(guī)的解題思路,往往和分類(lèi)討論思想結(jié)合在一起考查。如本題的第二問(wèn),通過(guò)函數(shù)單調(diào)遞增的等價(jià)性判斷參數(shù)m范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共13分)
已知函數(shù)的反函數(shù)為,數(shù)列和滿(mǎn)足:,,
函數(shù)的圖象在點(diǎn)處的切線在軸上的截距為.
(1)求數(shù)列{}的通項(xiàng)公式;
(2)若數(shù)列的項(xiàng)僅最小,求的取值范圍;
(3)令函數(shù),數(shù)列滿(mǎn)足:,且
,其中.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年普通高中招生考試北京市高考理科數(shù)學(xué) 題型:解答題
(本小題共13分)
已知函數(shù)。
(Ⅰ)求的最小正周期:
(Ⅱ)求在區(qū)間上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年普通高中招生考試北京市高考理科數(shù)學(xué) 題型:解答題
(本小題共13分)
已知函數(shù)。
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的,都有≤,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市海淀區(qū)高三下學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題
(本小題共13分)
已知每項(xiàng)均是正整數(shù)的數(shù)列:,其中等于的項(xiàng)有個(gè),
設(shè) , .
(Ⅰ)設(shè)數(shù)列,求;
(Ⅱ)若數(shù)列滿(mǎn)足,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市豐臺(tái)區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題共13分)
已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
(Ⅰ)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是,求的值;
(Ⅱ)若函數(shù),求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com