3.已知等差數(shù)列{an}的前n項和Sn滿足S3=0,S5=-5,則數(shù)列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前8項和為( 。
A.-$\frac{3}{4}$B.-$\frac{8}{15}$C.$\frac{3}{4}$D.$\frac{8}{15}$

分析 根據(jù)等差數(shù)列的前n項和公式解方程組即可求{an}的通項公式,再求出求數(shù)列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}通項公式,利用裂項法即可求前8項和

解答 解:由等差數(shù)列的性質(zhì)可得$\left\{\begin{array}{l}{3{a}_{1}+3d=0}\\{5{a}_{1}+\frac{5×4d}{2}=-5}\end{array}\right.$,
即$\left\{\begin{array}{l}{{a}_{1}+d=0}\\{{a}_{1}+2d=-1}\end{array}\right.$,解得a1=1,d=-1,
則{an}的通項公式an=1-(n-1)=2-n,
∴$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$=$\frac{1}{(3-2n)(1-2n)}$=$\frac{1}{(2n-3)(2n-1)}$=$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$),
∴數(shù)列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前8項和為$\frac{1}{2}$(-1-1+1-$\frac{1}{3}$+…+$\frac{1}{13}$-$\frac{1}{15}$)=$\frac{1}{2}$(-1-$\frac{1}{15}$)=-$\frac{8}{15}$,
故選:B.

點評 本題主要考查等差數(shù)列的通項公式的求解,以及利用裂項法進行求和,考查學(xué)生的計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)f(x)=x4-ax2-bx-1在x=1處有極值,則9a+3b的最小值為( 。
A.4B.9C.18D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點P(x0,y0)在拋物線W:y2=4x上,且點P到W的準(zhǔn)線的距離與點P到x軸的距離相等,則x0的值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若ab<0且a+b=1,二項式(a+b)9按a的降冪排列,展開后其第二項不大于第三項,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.f(x)=$\frac{sinx}{x}$,則f′(π)的值為( 。
A.$-\frac{1}{π}$B.$\frac{1}{π}$C.$-\frac{1}{π^2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i是虛數(shù)單位,則($\frac{1+i}{{\sqrt{2}}}$)2015在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,$\overrightarrow{CA}$=$\vec a$,$\overrightarrow{CB}$=$\vec b$,D、E分別是CA、CB的中點,$\overrightarrow{DE}$=( 。
A.$\vec a$-$\vec b$B.$\vec b$-$\vec a$C.$\frac{1}{2}$($\vec a$-$\vec b$)D.$\frac{1}{2}$($\vec b$-$\vec a$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在平行四邊形ABCD中,E為AB的中點,$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$,則下列向量表示錯誤的是( 。
A.$\overrightarrow{AC}$=$\overrightarrow a$+$\overrightarrow b$B.$\overrightarrow{BD}$=$\overrightarrow a$-$\overrightarrow b$C.$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow a$D.$\overrightarrow{CB}$=-$\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.銳角△ABC三邊長分別為x,x+1,x+2,則x的取值范圍是( 。
A.(-1,3)B.(1,3)C.(3,+∞)D.(1,3)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊答案