某連鎖分店銷售某種品牌產品,每件產品的成本為4元,并且每件產品需向總店交5元的管理費,預計當每件產品的售價為x元(10≤x≤12)時,一年的銷售量為(13-x)2萬件.
(1)求該連鎖分店一年的利潤L(萬元)與每件產品的售價x的函數(shù)關系式L(x)(銷售一件商品獲得的利潤為x-(4+5));
(2)當每件產品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最大值.
分析:(1)利潤函數(shù)L(萬元)與售價x的關系式為:L(x)=(銷售一件商品獲得的利潤)×一年的銷售量;
(2)對利潤函數(shù)求導,得L′(x),令L'(x)=0,解得x的值,從而求得L(x)的最大值,即利潤最大.
解答:解:(1)該連鎖分店一年的利潤L(萬元)與售價x的函數(shù)關系式為:L(x)=(x-9)(13-x)2,x∈[10,12].
(2)對利潤函數(shù)求導,得L′(x)=(13-x)2-2(x-9)(13-x)=(13-x)(31-3x);
令L'(x)=0,得x=
31
3
或x=13(舍去);
因為L(x)在x∈[10,
31
3
]
上單調遞增,L(x)在x∈[
31
3
,12]
上單調遞減,
所以Lmax=L(
31
3
)=(
31
3
-9)(13-
31
3
)2=
256
27

答:當每件售價為
31
3
元時,該連鎖分店一年的利潤L最大,最大值為
256
27
萬元.
點評:本題考查了利潤函數(shù)模型的應用,并且考查了用導數(shù)法求三次函數(shù)在定義域上的最值問題,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交a(1≤a≤3)元的管理費,預計當每件商品的售價為x(7≤x≤9)元時,一年的銷售量為(10-x)2萬件.
(Ⅰ)求該連鎖分店一年的利潤L(萬元)與每件商品的售價x的函數(shù)關系式L(x);
(Ⅱ)當每件商品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某連鎖分店銷售某種品牌產品,每件產品的成本為4元,并且每件產品需向總店交5元的管理費,預計當每件產品的售價為x元(10≤x≤12)時,一年的銷售量為(13-x)2萬件.
(1)求該連鎖分店一年的利潤L(萬元)與每件產品的售價x的函數(shù)關系式L(x)(銷售一件商品獲得的利潤為x-(4+5));
(2)當每件產品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某連鎖分店銷售某種品牌產品,每件產品的成本為4元,并且每件產品需向總店交5元的管理費,預計當每件產品的售價為x元(10≤x≤12)時,一年的銷售量為(13-x)2萬件.
(1)求該連鎖分店一年的利潤L(萬元)與每件產品的售價x的函數(shù)關系式L(x)(銷售一件商品獲得的利潤為x-(4+5));
(2)當每件產品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年江蘇省揚州中學高二(上)期末數(shù)學試卷(解析版) 題型:解答題

某連鎖分店銷售某種品牌產品,每件產品的成本為4元,并且每件產品需向總店交5元的管理費,預計當每件產品的售價為x元(10≤x≤12)時,一年的銷售量為(13-x)2萬件.
(1)求該連鎖分店一年的利潤L(萬元)與每件產品的售價x的函數(shù)關系式L(x)(銷售一件商品獲得的利潤為x-(4+5));
(2)當每件產品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最大值.

查看答案和解析>>

同步練習冊答案