【題目】已知橢圓的中心在坐標原點,且經(jīng)過點,它的一個焦點與拋物線E:的焦點重合,斜率為k的直線l交拋物線E于A、B兩點,交橢圓于C、D兩點.
(1)求橢圓的方程;
(2)直線l經(jīng)過點,設(shè)點,且的面積為,求k的值;
(3)若直線l過點,設(shè)直線,的斜率分別為,,且,,成等差數(shù)列,求直線l的方程.
【答案】(1)
(2)
(3)
【解析】
(1)由題知得到,解方程組即可.
(2)設(shè)直線:,由得:.利用弦長公式和點到直線的距離公式即可得到,解方程即可.
(3)設(shè)直線:,帶入橢圓方程得到.根據(jù)韋達定理和等差中項的性質(zhì)得到,解方程即可求出直線方程.
(1)設(shè)橢圓的方程為,
由題設(shè)得,∴.
∴橢圓的方程是.
(2)設(shè)直線:,設(shè),,
由得:.
,.
與拋物線有兩個交點,,,
則.
到的距離,
又,所以.
,故.
(3)設(shè)直線:,設(shè),,
由消去得:.
因為在橢圓內(nèi)部,所以與橢圓恒有兩個交點,
所以.
由,,成等差數(shù)列得.
.
所以解得:.
所以直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列和滿足:,,且對一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(2)求數(shù)列的前項和;
(3)設(shè),記數(shù)列的前項和為,求正整數(shù),使得對任意,均有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是AB,PD的中點,且PA=AD.
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求證:平面PEC⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的各項均為整數(shù),其前n項和為.規(guī)定:若數(shù)列滿足前r項依次成公差為1的等差數(shù)列,從第項起往后依次成公比為2的等比數(shù)列,則稱數(shù)列為“r關(guān)聯(lián)數(shù)列”.
(1)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,求數(shù)列的通項公式;
(2)在(1)的條件下,求出,并證明:對任意,;
(3)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,當時,在與之間插入n個數(shù),使這個數(shù)組成一個公差為的等差數(shù)列,求,并探究在數(shù)列中是否存在三項,,其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
給定橢圓,稱圓心在原點,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為.
(I)求橢圓C的方程和其“準圓”方程;
(II )點P是橢圓C的“準圓”上的一個動點,過點P作直線,使得與橢圓C都只有一個交點,且分別交其“準圓”于點M,N.
(1)當P為“準圓”與軸正半軸的交點時,求的方程;
(2)求證:|MN|為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標準差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個零件,標上記號,并從這個零件中再抽取個,求再次抽取的個零件中恰有個尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中,真命題是( )
A.和兩條異面直線都相交的兩條直線是異面直線
B.和兩條異面直線都相交于不同點的兩條直線是異面直線
C.和兩條異面直線都垂直的直線是異面直線的公垂線
D.若、是異面直線,、是異面直線,則、是異面直線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnxa,f′(x)是f(x)的導函數(shù),若關(guān)于x的方程f′(x)0有兩個不等的根,則實數(shù)a的取值范圍是_____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com