已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<=的圖象在y軸上的截距為1,在相鄰兩最值點(diǎn)(x,2),(x+,-2)處分別取得最大值和最小值,則函數(shù)f(x)的解析式為   
【答案】分析:易知A=2,利用相鄰兩最值點(diǎn)之間為半個(gè)周期,求出ω,最后由曲線(xiàn)過(guò)點(diǎn)(0,1)求出φ.
解答:解:由已知,A=2,=x+-x=,T=π,∴ω=2.又曲線(xiàn)過(guò)點(diǎn)(0,1)∴1=2sinφ,φ=
故答案為:f(x)=2sin(2x+
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,數(shù)形結(jié)合的思想.準(zhǔn)確掌握三角函數(shù)的圖象和性質(zhì)是前提.要能借助圖形,提取有用的信息來(lái)解決問(wèn)題,本題有用的信息為:函數(shù)的周期及函數(shù)的最值,根據(jù)此信息確定出A,ω及φ的值是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線(xiàn)的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案