函數(shù)f(x)=x2+
256
x2
+a+b的零點(diǎn)都在(-∞,-2]∪[2,+∞)內(nèi),求a2+b2
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先根據(jù)函數(shù)的零點(diǎn)的范圍求出a+b的范圍,再由點(diǎn)到直線的距離公式求出
a2+b2
,從而求出a2+b2
解答: 解:若f(x)的零點(diǎn)為x0
x02+
256
x02
+a+b=0,
x02+
256
x02
≥2
256
=32,
∴a+b=-(x02+
256
x02
)≤-32,
∴(a,b)可以看作是x+y≤-32范圍內(nèi)的點(diǎn),
而d=
a2+b2
可以看作是原點(diǎn)到點(diǎn)(a,b)的距離,
∴點(diǎn)(a,b)在x+y=-32上時(shí)d最小,
∴d=
32
2
=16
2
,
∴a2+b2的最小值是512.
點(diǎn)評:本題考察了函數(shù)的零點(diǎn)問題,基本不等式的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ=
5
5
,則cos2θ等于(  )
A、
2
5
5
B、
10
5
C、
2
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(ex+e-x)sinx的部分圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題“如果x⊥y,y∥z,則x⊥z”是假命題,那么字母x,y,z在空間所表示的幾何圖形可能是( 。
A、全是直線
B、全是平面
C、x,z是直線,y是平面
D、x,y是平面,z是直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M={x|x=2m-1,m∈Z},N={x|x2-x-12<0,x∈R},則集合M∩N等于( 。
A、{-3,-1,1,3}
B、{1,3}
C、{0,1,2,3}
D、{-1,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足2f(x+2)=f(x),當(dāng)x∈(0,2)時(shí),f(x)=lnx+ax(a<-
1
2
),當(dāng)x∈(-4,-2)時(shí),f(x)的最大值為-4.求x∈(0,2)時(shí)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2cosxsin(x-A)+sinA,(x∈R)在x=
12
處取得最大值,且A∈[0,π].
(Ⅰ)求角A的大。
(Ⅱ)求函數(shù)f(x)在區(qū)間[-
π
6
,
π
3
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的電路圖,設(shè)命題p:開關(guān)K閉合,命題q:開關(guān)K1閉合,命題s:開關(guān)K2閉合,命題t:開關(guān)K3閉合.
(1)寫出燈泡A亮的充要條件;
(2)寫出燈泡B不亮的充分不必要條件;
(3)寫出燈泡C亮的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn=
2
bnbn+1
,記數(shù)列{cn}的前n項(xiàng)和為Tn.若對于任意的n∈N*,Tn≤λ(n+4)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案