18.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{\frac{x}{3}+\frac{y}{4}≤1}\end{array}\right.$,則x-2y的最大值為3.

分析 先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=x-2y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最小值即可.

解答 解:實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{\frac{x}{3}+\frac{y}{4}≤1}\end{array}\right.$,作圖:
易知可行域為一個三角形,
驗證知在點B(3,0)時,x-2y取得最大值3,
故答案為:3.

點評 本小題是考查線性規(guī)劃問題,本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知等比數(shù)列{an}的前n項和為Sn,且S4=a5-a1
(1)求數(shù)列{an}的公比q的值;
(2)記bn=log2an+1,數(shù)列{bn}的前n項和為Tn,若T4=2b5,求數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前9項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知拋物線Γ:y2=2px上一點M(3,m)到焦點的距離為4,動直線y=kx(k≠0)交拋物線Γ于坐標原點O和點A,交拋物線Γ的準線于點B,若動點P滿足$\overrightarrow{OP}=\overrightarrow{BA}$,動點P的軌跡C的方程為F(x,y)=0;
(1)求出拋物線Γ的標準方程;
(2)求動點P的軌跡方程F(x,y)=0;(不用指明范圍)
(3)以下給出曲線C的四個方面的性質(zhì),請你選擇其中的三個方面進行研究:①對稱性;②圖形范圍;③漸近線;④y>0時,寫出由F(x,y)=0確定的函數(shù)y=f(x)的單調(diào)區(qū)間,不需證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示其中一個數(shù)字被污損.
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學習積累的熱情,從中獲益匪淺,現(xiàn)從觀看節(jié)目的觀眾中隨機統(tǒng)計了4位觀眾的周均學習成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示);
年齡x(歲) 20 30 40 50
 周均學習成語知識時間y(小時) 2.5 3 44.5
由表中數(shù)據(jù),試求線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預測年齡為50歲觀眾周均學習成語知識時間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=i}^{m}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=i}^{n}{{x}^{2}}_{i}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.道路交通法規(guī)定:行人和車輛路過十字路口時必須按照交通信號指示通行,綠燈行,紅燈停,遇到黃燈時,如已超過停車線須繼續(xù)行進.某十字路口的交通信號燈設置時間是:綠燈48秒.紅燈47秒,黃燈5秒.小張是個特別守法的人,只有遇到綠燈才通過,則他路過該路口的概率為( 。
A.0.95B.0.05C.0.47D.0.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知點M到定點F(1,0)和定直線x=4的距離之比為$\frac{1}{2}$,設動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設P(4,0),過點F作斜率不為0的直線l與曲線C交于兩點A,B,設直線PA,PB的斜率分別是k1,k2,求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)與圓E:x2+(y-$\frac{3}{2}$)2=4相交于A,B兩點,且|AB|=2$\sqrt{3}$,圓E交y軸負半軸于點D.
(Ⅰ)求橢圓Γ的離心率;
(Ⅱ)過點D的直線交橢圓Γ于M,N兩點,點N與點N'關于y軸對稱,求證:直線MN'過定點,并求該定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知α∈R,則“cosα=-$\frac{\sqrt{3}}{2}$”是“α=2kπ+$\frac{5π}{6}$,k∈Z”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設△ABC的內(nèi)角A、B、C的對邊分別為a,b,c,且$\overrightarrow{u}$=(b,-$\sqrt{3}$a),$\overrightarrow{v}$=(sinA,cosB),$\overrightarrow{u}$⊥$\overrightarrow{v}$.
(1)求角B的大;
(2)若b=3,c=2a,求a,c的值.

查看答案和解析>>

同步練習冊答案