分析 利用等差數列的通項公式可得an=3n-63,數列{an}的前n項和Sn.令an≥0,解得n≥21.n≤21時,Tn=|a1|+|a2|+…|an|=-Sn.n≥22時,Tn=-S21+(a22+…+an)=-2S21+Sn,即可得出.
解答 解:∵a16+a17+a18═-36,∴3a17=-36,∴a17=-12,
∴a1+16d=-12,又a1+8d=-36.
聯(lián)立解得a1=-60,d=3.
∴an=-60+3(n-1)=3n-63.
則數列{an}的前n項和Sn=$\frac{n(-60+3n-63)}{2}$=$\frac{3}{2}{n}^{2}$-$\frac{123}{2}$n.
令an≥0,解得n≥21.
∴n≤21時,Tn=|a1|+|a2|+…|an|=-(a1+a2+…+an)=-Sn=-$\frac{3}{2}{n}^{2}$+$\frac{123}{2}$n.
n≥22時,Tn=-S21+(a22+…+an)=-2S21+Sn
=$\frac{3}{2}{n}^{2}$-$\frac{123}{2}$n-2$(\frac{3}{2}×2{1}^{2}-\frac{123}{2}×21)$=$\frac{3}{2}{n}^{2}$-$\frac{123}{2}$n+1260.
∴Tn=$\left\{\begin{array}{l}{-\frac{3}{2}{n}^{2}+\frac{123}{2}n,n≤21}\\{\frac{3}{2}{n}^{2}-\frac{123}{2}n+1260,n≥22}\end{array}\right.$.
點評 本題考查了等差數列的通項公式與求和公式、絕對值數列求和問題,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com