已知p:|1-
x-1
3
| ≤2
,q:x2-2x+1-m2≤0(m>0),若¬p¬q的充分不必要條件,則實數(shù)m的取值范圍是( 。
分析:根據(jù)絕對值不等式和一元二次不等式的解法,分別解出命題p和q,根據(jù)¬p是¬q的充分不必要條件,可得q⇒p,從而求出m的范圍;
解答:解:命題p:∵|1-
x-1
3
| ≤2
,
∴-2≤
4-x
3
≤2
解得,-2≤x≤10;
命題q:∵x2-2x+1-m2≤0(m>0)
∴1-m≤x≤m+1,
∵¬p是¬q的充分不必要條件,
∴q是p的充分不必要條件,
∴q⇒p,
1+m≤10
1-m≥-2
解得m≤3,∵m>0
∴0<m≤3,驗證m=3時,命題q:-2≤m≤4,滿足q⇒p,
∴m的取值范圍為:0<m≤3;
故選D.
點評:此題主要考查一元二次不等式的解法與絕對值不等式的解法,做題時要注意驗證m=3是否成立,此題是一道基礎(chǔ)題;
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

8、已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x∈R};P={f(x)|f(1-x)=f(1+x),x∈R};Q={f(x)|f(1-x)=-f(1+x),x∈R};若f(x)=(x-1)3,x∈R,則下列關(guān)系中正確的序列號為:

①f(x)∈M②f(x)∈N③f(x)∈P④f(x)∈Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈[1,12],x2-a≥0.命題q:?x0∈R,使得x
 
2
0
+(a-1)x0+1<0.
(1)若p或q為真,p且q為假,求實數(shù)a的取值范圍. 
(2)實數(shù)m分別取什么值時,復數(shù)z=m+1+(m-1)i是 ①實數(shù)?②虛數(shù)?③純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:|1-
x-13
|≥2,q:x2-2x+1-m2≥0且m>0,問:是否存在實數(shù)m,使¬p是¬q的必要而不充分條件?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)g(x)=2x+數(shù)學公式,x∈[數(shù)學公式,4].
(1)求g(x)的單調(diào)區(qū)間;(簡單說明理由,不必嚴格證明)
(2)證明g(x)的最小值為g(數(shù)學公式);
(3)設(shè)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=sinx,x∈[-數(shù)學公式數(shù)學公式],則f1(x)=-1,x∈[-數(shù)學公式,數(shù)學公式],f2(x)=sinx,x∈[-數(shù)學公式,數(shù)學公式],設(shè)φ(x)=數(shù)學公式+數(shù)學公式,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年上海市六校高三(上)12月聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

設(shè)g(x)=2x+,x∈[,4].
(1)求g(x)的單調(diào)區(qū)間;(簡單說明理由,不必嚴格證明)
(2)證明g(x)的最小值為g();
(3)設(shè)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=sinx,x∈[-,],則f1(x)=-1,x∈[-,],f2(x)=sinx,x∈[-],設(shè)φ(x)=+,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

查看答案和解析>>

同步練習冊答案