已知雙曲線an-1y2-anx2=an-1an的焦點(diǎn)在y軸上,一條漸近線方程為y=
2
x
,其中{an}是以4為首項(xiàng)的正數(shù)數(shù)列,則數(shù)列{an}的通項(xiàng)公式是( 。
A.an=2
n+3
2
B.a(chǎn)n=21-nC.a(chǎn)n=4n-2D.a(chǎn)n=2n+1
雙曲線即:
y2
an
-
x2
an-1
=1,
∵{an}是以4為首項(xiàng)的正數(shù)數(shù)列,一條漸近線方程為y=
2
x

an
an-1
=
2
,
an
an-1
=2,∴an=4•2n-1=2n+1,
故答案 D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線an-1y2-anx2=an-1an的焦點(diǎn)在y軸上,一條漸近線方程為y=
2
x
,其中{an}是以4為首項(xiàng)的正數(shù)數(shù)列,則數(shù)列{an}的通項(xiàng)公式是( 。
A、an=2
n+3
2
B、an=21-n
C、an=4n-2
D、an=2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線an-1y2-anx2=an-1an的一個(gè)焦點(diǎn)(0,
cn
)
,一條漸近線方程為y=
2
x
,其中an是以4為首項(xiàng)的正項(xiàng)數(shù)列,數(shù)列cn的首項(xiàng)為6.
(Ⅰ)求數(shù)列Cn的通項(xiàng)公式;
(Ⅱ)若不等式
1
c1
+
2
c2
+…+
n
cn
+
n
3•2n
2
3
+loga(2x+1)(a>0且a≠1)
對(duì)一切自然數(shù)n恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線an-1y2-anx2=an-1an的一個(gè)焦點(diǎn)為(0,
cn
)(n≥2)
,且c1=6,一條漸近線方程為y=
2
x
,其中{an}是以4為首項(xiàng)的正數(shù)數(shù)列,記Tn=a1c1+a2c2+…+ancn(n∈N*).
(1)求數(shù)列{cn}的通項(xiàng)公式;
(2)數(shù)列{cn}的前n項(xiàng)和為Sn,求
lim
n→∞
S
2
n
Tn

(3)若不等式
1
c1
+
2
c2
+…+
n
cn
+
n
3•2n
1
3
+loga(2x+1)(a>0,a≠1)
對(duì)一切自然數(shù)n(n∈N*)恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線an-1y2-anx2=an-1an的一個(gè)焦點(diǎn)為(0,),一條漸近線方程為y=x,其中{an}是以4為首項(xiàng)的正數(shù)數(shù)列,記Pn=a1c1+a2c2+…+ancn.

(1)求數(shù)列{cn}的通項(xiàng)公式;

(2)若數(shù)列{cn}的前n項(xiàng)的和為Sn,求;

(3)若不等式+loga(2x+1)(a>0,且a≠1)對(duì)一切自然數(shù)n恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山西省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

已知雙曲線an-1y2-anx2=an-1an的一個(gè)焦點(diǎn),一條漸近線方程為,其中an是以4為首項(xiàng)的正項(xiàng)數(shù)列,數(shù)列cn的首項(xiàng)為6.
(I)求數(shù)列Cn的通項(xiàng)公式;
(II)若不等式對(duì)一切自然數(shù)n恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案