函數(shù)y=3x2-3x-2的遞增區(qū)間為
 
考點:復合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用換元法,結(jié)合指數(shù)函數(shù)和一元二次函數(shù)的單調(diào)性之間的關(guān)系即可得到結(jié)論.
解答: 解:設(shè)t=x2-3x-2,
則函數(shù)等價為y=g(t)=3t
∵y=g(t)=3t在定義域上為增函數(shù),
∴要求函數(shù)y=3x2-3x-2的遞增區(qū)間,
根據(jù)復合函數(shù)的單調(diào)性之間的關(guān)系即可函數(shù)t=x2-3x-2的增區(qū)間,
∵函數(shù)t=x2-3x-2的對稱軸為x=-
-3
2
=
3
2
,拋物線開口向上,
∴函數(shù)t=x2-3x-2的增區(qū)間為[
3
2
,+∞),
故函數(shù)y=3x2-3x-2的遞增區(qū)間為[
3
2
,+∞),
故答案為:[
3
2
,+∞)
點評:本題主要考查函數(shù)單調(diào)區(qū)間的求解,根據(jù)復合函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

現(xiàn)定義一種變換:對于一個由有限個數(shù)組成的序列S0,將其中的每個數(shù)換成該數(shù)在S0中出現(xiàn)的次數(shù),可得到一個新序列S1,例如序列S0:(4,2,3,4,2),通過變換可生成新序列S1:(2,2,1,2,2),若S0可以為任意序列,則下面的序列可作為S1的是( 。
A、(1,2,1,2,2)
B、(2,2,2,3,3)
C、(1,1,2,2,3)
D、(1,2,1,1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(sinx,-1),
n
=(
3
cosx,-
1
2
),函數(shù)f(x)=
m
2
+
m
n
-2

(1)求f(x)的最大值,并求取最大值時x的取值集合;
(2)已知a、b、c分別為△ABC內(nèi)角A、B、C的對邊,且b2=ac,B為銳角,且f(B)=1,求
1
tanA
+
1
tanC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
9
-
y2
16
=1的兩個焦點,點P在雙曲線上,且|PF1|•|PF2|=32,求證:PF1⊥PF2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x
2
 
a
2
 
-
y
2
 
b
2
 
=1(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有兩個交點,則此雙曲線離心率的取值范圍是(  )
A、(1,2)
B、(1,2]
C、[2,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1+3•a2+32•a3+…+3n-1•an=
n
2
,則an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x+1+9x-12,若方程a=f(x)有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知拋物線的焦點是F(-2,0),求它的標準方程;
(2)已知橢圓的長軸長是短軸長的3倍,且經(jīng)過點P(0,3),求橢圓的標準方程;
(3)已知雙曲線兩個焦點分別為F1(0,-6),F(xiàn)2(0,6),雙曲線上一點P到F1,F(xiàn)2的距離差的絕對值等于8,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件,求圓的方程:
(1)經(jīng)過A(6,5)、B(0,1)兩點,并且圓心C在直線3x+10y+9=0上;
(2)經(jīng)過P(-2,4)、Q(3,-1)兩點,并且在x軸上截得的弦長等于6.

查看答案和解析>>

同步練習冊答案