已知數(shù)列的前項和為滿足
(1)證明數(shù)列為等比數(shù)列;
(2)設(shè),求數(shù)列的前項和

(1)詳見解析;(2)  .

解析試題分析:(1)根據(jù)已知,當(dāng)時,,然后兩式相減,利用,得到關(guān)于數(shù)列的遞推公式,;
(2),由形式分析,的前n項和用錯位相減法求和,的前n項和用等差數(shù)列前n項和公式.
解:(1)
兩式相減得:
即:
又因為
所以數(shù)列為首項為公比為的等比數(shù)列
(2)由(1)知 
所以


      (1)
      (2)
(1)-(2)得

故:  
考點:1.已知;2.等比數(shù)列的定義;3.錯位相減法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知單調(diào)遞增的等比數(shù)列{an}滿足a1+a2+a3=14,且a2+1是a1,a3的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=anlog2an,求數(shù)列{bn}的前n項和Sn;
(3)若存在n∈N*,使得Sn+1﹣2≤8n3λ成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩容器中分別盛有兩種濃度的某種溶液,從甲容器中取出溶液,將其倒入乙容器中攪勻,再從乙容器中取出溶液,將其倒入甲容器中攪勻,這稱為是一次調(diào)和,已知第一次調(diào)和后,甲、乙兩種溶液的濃度分別記為:,,第次調(diào)和后的甲、乙兩種溶液的濃度分別記為:、.
(1)請用分別表示;
(2)問經(jīng)過多少次調(diào)和后,甲乙兩容器中溶液的濃度之差小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2011•山東)等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.

 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:bn=an+(﹣1)nlnan,求數(shù)列{bn}的前2n項和S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn,數(shù)列{Sn}的前n項和為Tn,滿足Tn=2Sn-n2,n∈N.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n∈N*),在數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項公式;
(2)記Tn=a1b1+a2b2+ +anbn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

個實數(shù)組成的列數(shù)表中,先將第一行的所有空格依次填上,,再將首項為公比為的數(shù)列依次填入第一列的空格內(nèi),然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)律填寫其它空格

 
第1列
第2列
第3列
第4列
 

第1行




 

第2行

 
 
 
 
 
第3行

 
 
 
 
 
第4行

 
 
 
 
 
 

 
 
 
 
 
 


 
 
 
 
 
(1)設(shè)第2行的數(shù)依次為.試用表示的值;
(2)設(shè)第3行的數(shù)依次為,記為數(shù)列.
①求數(shù)列的通項;
②能否找到的值使數(shù)列的前)成等比數(shù)列?若能找到,的值是多少?若不能找到,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,
(1)求數(shù)列的通項;
(2)令求數(shù)列的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個數(shù),且a1,a2,a3中的任何兩個數(shù)不在下表的同一列.

 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
 
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:bn=an+(-1)nlnan,求數(shù)列{bn}的前2n項和S2n.

查看答案和解析>>

同步練習(xí)冊答案