等差數(shù)列{an}前n項和為Sn,a4+a6=-6.則當(dāng)Sn取最小值時,n=( 。
A、6B、7C、8D、9
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列的性質(zhì)化簡a4+a6=-6,得到a5的值,然后根據(jù)a1的值,利用等差數(shù)列的通項公式即可求出公差d的值,根據(jù)a1和d的值寫出等差數(shù)列的通項公式,進而寫出等差數(shù)列的前n項和公式Sn,配方后即可得到Sn取最小值時n的值.點評:
解答: 解:由a4+a6=2a5=-6,解得a5=-3,又a1=-11,
∴a5=a1+4d=-11+4d=-3,解得d=2,
則an=-11+2(n-1)=2n-13,
∴Sn=
n(a1+an)
2
=n2-12n=(n-6)2-36,
∴當(dāng)n=6時,Sn取最小值.
故選:A.
點評:此題考查學(xué)生靈活運用等差數(shù)列的通項公式及前n項和公式化簡求值,掌握等差數(shù)列的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x+1,x≥1
3-x,x<1
,則f(f(-1))的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的函數(shù)f(x)=
1
x2-2x-3
的定義域為集合A,函數(shù)g(x)=-x-a(-4≤x≤0)的值域為集合B.
(1)求集合A,B;
(2)若集合A,B滿足A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(2x+
π
3
)-1,x∈[0,
π
3
]的值域為
 
,并且取最大值時x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x+1)=6x+5,則f(x)的解析式是( 。
A、3x+2B、3x+1
C、3x-1D、3x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+2x+1在點(-1,0)處的切線方程為(  )
A、y=x+1
B、y=-x-1
C、y=0
D、y=-4x-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
x+1
+
4-x2
的定義域為( 。
A、[-2,0)∪(0,2]
B、(-1,0)∪(0,2]
C、[-2,2]
D、(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={1,2},且M∪N={1,2,3},則集合N可以是( 。
A、{1,2}B、{1,3}
C、{2}D、{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln(x-1)+
x2-4
的定義域為
 

查看答案和解析>>

同步練習(xí)冊答案