(2013•寧波二模)在直角坐標(biāo)平面上,已知點(diǎn)A(0,2),B(0,1),D(t,0)(t>0).點(diǎn)M是線段AD上的動點(diǎn),如果|AM|≤2|BM|恒成立,則正實(shí)數(shù)t的最小值是
2
3
3
2
3
3
分析:設(shè)M(x,y),由題意可得y=
2t-2x
t
,代入距離公式可得x2+(y-2)2≤4[x2+(y-1)2],消掉y可得(3t2+12)x2-16tx+4t2≥0恒成立,進(jìn)而可得其△≤0,解此不等式可得t的范圍,進(jìn)而可得最小值.
解答:解:設(shè)M(x,y),則由A、M、D三點(diǎn)共線可得
y-2
x
=
y
x-t
,整理可得y=
2t-2x
t

由兩點(diǎn)間的距離公式,結(jié)合|AM|≤2|BM|恒成立可得x2+(y-2)2≤4[x2+(y-1)2],
整理可得3x2+3y2-4y≥0,代入y=
2t-2x
t
化簡可得(3t2+12)x2-16tx+4t2≥0恒成立,
∵3t2+12>0,由二次函數(shù)的性質(zhì)可得△=(-16t)2-4(3t2+12)•4t2≤0,
整理可得3t4-4t2≥0,即t2
4
3
,解得t≥
2
3
3
,或t≤-
2
3
3
(因?yàn)閠>0,故舍去)
故正實(shí)數(shù)t的最小值是:
2
3
3

故答案為:
2
3
3
點(diǎn)評:本題考查兩點(diǎn)間的距離公式,涉及不等式的解法,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)設(shè)公比大于零的等比數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,S4=5S2,數(shù)列{bn}的前n項(xiàng)和為Tn,滿足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)Cn=(Sn+1)(nbn-λ),若數(shù)列{Cn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對任意x∈R都有f′(x)>f(x)成立,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)已知函數(shù)f(x)=a(x-1)2+lnx.a(chǎn)∈R.
(Ⅰ)當(dāng)a=-
1
4
時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[1,+∞)時,函數(shù)y=f(x)圖象上的點(diǎn)都在不等式組
x≥1
y≤x-1
所表示的區(qū)域內(nèi),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)如圖是某學(xué)校抽取的n個學(xué)生體重的頻率分布直方圖,已知圖中從左到右的前3個小組的頻率之比為1:2:3,第3個小組的頻數(shù)為18,則的值n是
48
48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)已知兩非零向量
a
b
,則“
a
b
=|
a
||
b
|”是“
a
b
共線”的(  )

查看答案和解析>>

同步練習(xí)冊答案