分析 (1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,運(yùn)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式,列方程,解方程可得公差和公比,即可得到所求通項(xiàng)公式;
(2)求出cn=(3n-1)•2n,運(yùn)用數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理,即可得到所求和.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q.
由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d.
由條件,得方程組$\left\{\begin{array}{l}{2+3d+2{q}^{3}=27}\\{8+6d-2{q}^{3}=10}\end{array}\right.$,
解得$\left\{\begin{array}{l}{d=3}\\{q=2}\end{array}\right.$,
所以an=3n-1,bn=2n,n∈N*.
(2)證明:由題意可得${T_n}=({3×1-1})•{2^1}+({3×2-1})•{2^2}+({3×3-1})•{2^3}+…+({3n-1})•{2^n}$①
$2{T_n}=({3×1-1})•{2^2}+({3×2-1})•{2^3}+({3×3-1})•{2^4}+…[{3({n-1})-1}]•{2^n}+({3n-1})•{2^{n+1}}$②
由①-②,得$-{T_n}=2×{2^1}+3×{2^2}+3×{2^3}+…+3×{2^n}-({3n-1})•{2^{n+1}}$
=4+3•$\frac{4(1-{2}^{n-1})}{1-2}$-(3n-1)•2n+1,
∴${T_n}=8+({3n-4})•{2^{n+1}}$.
點(diǎn)評 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:錯位相減法,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $-\frac{1}{8}$ | C. | $±\frac{1}{8}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -2 | C. | 2 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1006 | B. | 1007 | C. | 503 | D. | 504 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)<f(4)ln2,2f(e)>f(e2) | B. | f(2)<f(4)ln2,2f(e)<f(e2) | ||
C. | f(2)>f(4)ln2,2f(e)<f(e2) | D. | f(2)>f(4)ln2,2f(e)>f(e2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com