用數(shù)學(xué)歸納法證明:三個連續(xù)自然數(shù)的立方和能被9整除.

答案:數(shù)學(xué)歸納法
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在觀察正整數(shù)的前n項平方和公式即12+22+32+…+n2=
n(n+1)(2n+1)
6
,n∈N*時發(fā)現(xiàn)它的和為關(guān)于n的三次函數(shù),于是他猜想:是否存在常數(shù)a,b,1•22+2•32+…+n(n+1)2=
n(n+1)(n+2)(an+b)
12
.對于一切n∈N*都立?
(1)若n=1,2 時猜想成立,求實數(shù)a,b的值.
(2)若該同學(xué)的猜想成立,請你用數(shù)學(xué)歸納法證明.若不成立,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•奉賢區(qū)一模)首項為正數(shù)的數(shù)列{an}滿足an+1=
an2+34
,(n∈N*)

(1)當{an}是常數(shù)列時,求a1的值;
(2)用數(shù)學(xué)歸納法證明:若a1為奇數(shù),則對一切n≥2,an都是奇數(shù);
(3)若對一切n∈N*,都有an+1>an,求a1的取值范圍;
(4)以上(1)(2)(3)三個問題是從數(shù)列{an}的某一個角度去進行研究的,請你類似地提出一個與數(shù)列{an}相關(guān)的數(shù)學(xué)真命題,并加以推理論證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項的符號,得到的新數(shù)列{an}稱為數(shù)列{An}的一個生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項的符號可以得到一個生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項和.
(1)寫出S3的所有可能值;
(2)若生成數(shù)列{an}的通項公式為an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn;
(3)用數(shù)學(xué)歸納法證明:對于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省無錫一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某學(xué)生在觀察正整數(shù)的前n項平方和公式即12+22+32+…+n2=,n∈N*時發(fā)現(xiàn)它的和為關(guān)于n的三次函數(shù),于是他猜想:是否存在常數(shù)a,b,1•22+2•32+…+n(n+1)2=.對于一切n∈N*都立?
(1)若n=1,2 時猜想成立,求實數(shù)a,b的值.
(2)若該同學(xué)的猜想成立,請你用數(shù)學(xué)歸納法證明.若不成立,說明理由.

查看答案和解析>>

同步練習(xí)冊答案