已知向量
a
=(
1
2
3
sinx),
b
=(cos2x,-cosx),x∈R,設(shè)函數(shù)f(x)=
a
b

(Ⅰ)求f(x)的最小正周期及在區(qū)間[0,π]上的單調(diào)區(qū)間;
(Ⅱ)若f(θ)=1,求cos2
π
2
-θ)+
3
sinθcosθ的值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的運(yùn)算,三角函數(shù)的周期性及其求法
專(zhuān)題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)利用向量積的知識(shí),求得f(x)的解析式,進(jìn)而化簡(jiǎn),利用三角函數(shù)的圖象和性質(zhì)求得函數(shù)的最小正周期T和在區(qū)間[0,π]上的單調(diào)區(qū)間.
(Ⅱ)通過(guò)f(θ)=1,求得cos(2θ+
π
3
)的值,代入原式求得答案.
解答: 解:(Ⅰ)f(x)=
a
b
=
1
2
cos2x-
3
sinxcosx=
1
2
cos2x-
3
2
sin2x=cos(2x+
π
3
),
∴T=
2
=π,
當(dāng)π+2kπ≤2x+
π
3
≤2π+2kπ,k∈Z
,即
π
3
+kπ≤x≤
6
+kπ,k∈Z
時(shí),函數(shù)單調(diào)增,
∵x∈[0,π]
∴f(x)在區(qū)間[0,π]上的單調(diào)減區(qū)間為[0,
π
3
],[
6
,π]
,單調(diào)增區(qū)間為[
π
3
,
6
]

(Ⅱ)∵f(θ)=1,
cos(2θ+
π
3
)=1

cos2(
π
2
-θ)+
3
sinθcosθ
=
1-cos2θ
2
+
3
2
sin2θ=
1
2
-cos(2θ+
π
3
)=-
1
2
點(diǎn)評(píng):本題主要考查了三角函數(shù)恒等變換的應(yīng)用,三角函數(shù)圖象和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镈,若它的值域是D的子集,則稱(chēng)f(x)在D上封閉.
(Ⅰ)試判斷f(x)=2x,g(x)=log2x是否在(1,+∞)上封閉;
(Ⅱ)設(shè)f1(x)=f(x),fn(x)=f(fn-1(x))(n∈N*,n≥2),若fn(x)(n∈N*)的定義域均為D,求證:fn(x)在D上封閉的充分必要條件是f1(x)在D上封閉;
(Ⅲ)若a>0,求證:h(x)=
2
2
(|xsinx|+|xcosx|)在[0,a]上封閉,并指出值域?yàn)閇0,a]時(shí)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知角α終邊上一點(diǎn)P(-4a,3a),a≠0,求
cos(
π
2
+α)sin3(-π-α)
cos(
11π
2
-α)sin2(
2
+α)
的值.
(2)已知tanα=3,求
1
2sinαcosα+cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某種同品牌的6瓶飲料中有2瓶已過(guò)了保質(zhì)期.
(Ⅰ)從6瓶飲料中任意抽取1瓶,求抽到?jīng)]過(guò)保質(zhì)期的飲料的概率;
(Ⅱ)從6瓶飲料中任意抽取2瓶(不分先后順序).
(i)寫(xiě)出所有可能的抽取結(jié)果;
(ii)求抽到已過(guò)保質(zhì)期的飲料的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2|x-m|和函數(shù)g(x)=x|x-m|+2m-8,其中m為參數(shù),且滿(mǎn)足m≤5.
(1)若m=2,寫(xiě)出函數(shù)g(x)的單調(diào)區(qū)間(無(wú)需證明);
(2)若方程f(x)=2|m|在x∈[-2,+∞)上有唯一解,求實(shí)數(shù)m的取值范圍;
(3)若對(duì)任意x1∈[4,+∞),存在x2∈(-∞,4],使得f(x2)=g(x1)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

讀如圖所示的程序框圖,若輸入的值為-5,則輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin2x+2cos2x+m在區(qū)間[0,
π
2
]上的最大值為3,則
(Ⅰ)m=
 
;
(Ⅱ)當(dāng)f(x)在[a,b]上至少含有20個(gè)零點(diǎn)時(shí),b-a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小組中有6名女同學(xué)和4名男同學(xué),從中任意挑選3名同學(xué)組成環(huán)保志愿者宣傳隊(duì),則這個(gè)宣傳隊(duì)由2名女同學(xué)和1名男同學(xué)組成的概率是
 
(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+2x-8<0,x∈Z},集合B={x|x-2|<3,x∈R},則A∩B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案