三棱柱的直觀圖和三視圖如下圖所示,其側(cè)視圖為正三角形(單位cm)

⑴當(dāng)x=4時,求幾何體的側(cè)面積和體積

⑵當(dāng)x取何值時,直線AB1與平面BB1C1C和平面A1B1C1所成角大小相等。

 

(1)(2)

【解析】【解析】
⑴表面積

體積

,為直線AB1與平面A1B1C1所成角

中點,連接,,

為直線AB1與平面BB1C1C所成角

=,=,為公共邊

,

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題

如圖,,為圓柱的母線,是底面圓的直徑,,分別是,的中點,

(1)證明:;

(2)證明:

(3)假設(shè)這是個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會有被捕的危險,求魚被捕的概率.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科運用導(dǎo)數(shù)法確定函數(shù)的極值、最值、圖像(解析版) 題型:選擇題

函數(shù)f(x)的定義域為開區(qū)間(a,b),導(dǎo)函數(shù)f′(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)有極小值點(  )

A. 1個

B. 2個

C. 3個

D. 4個

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解答題后三題(解析版) 題型:解答題

已知曲線滿足下列條件:

①過原點;②在處導(dǎo)數(shù)為-1;③在處切線方程為.

(1) 求實數(shù)的值;

(2)求函數(shù)的極值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解答題前三題(解析版) 題型:解答題

如圖,在四棱錐P—ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長為2的菱形,∠BAD=60°,M為PC的中點.

(1)求證:PA//平面BDM;

(2)求直線AC與平面ADM所成角的正弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解三角形(解析版) 題型:選擇題

的三個內(nèi)角A,B,C所對的邊分別為,則(  )

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科角的集合表示(解析版) 題型:選擇題

表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是(  )

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科簡單幾何體的內(nèi)切球、外接球(解析版) 題型:選擇題

正四面體的外接球和內(nèi)切球的半徑的關(guān)系是(  )

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科直線與圓錐曲線(解析版) 題型:選擇題

已知直線與橢圓相交于兩點,若橢圓的離心率為,焦距為2,則線段的長是(  )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊答案