下列說法中,正確的有 .
①若點是拋物線上一點,則該點到拋物線的焦點的距離是;
②設(shè)、為雙曲線的兩個焦點,為雙曲線上一動點,,則的面積為;
③設(shè)定圓上有一動點,圓內(nèi)一定點,的垂直平分線與半徑的交點為點,則的軌跡為一橢圓;
④設(shè)拋物線焦點到準(zhǔn)線的距離為,過拋物線焦點的直線交拋物線于A、B兩點,則、、成等差數(shù)列.
①④
【解析】
試題分析:根據(jù)題意,由于①若點是拋物線上一點,則該點到拋物線的焦點的距離是;根據(jù)定義顯然得到成立。
②設(shè)、為雙曲線的兩個焦點,為雙曲線上一動點,則的面積為;結(jié)合定義和余弦定理可知面積為,故錯誤。
③設(shè)定圓上有一動點,圓內(nèi)一定點,的垂直平分線與半徑的交點為點,則的軌跡為一橢圓;不一定。錯誤
④設(shè)拋物線焦點到準(zhǔn)線的距離為,過拋物線焦點的直線交拋物線于A、B兩點,則、、成等差數(shù)列.聯(lián)立方程組,結(jié)合韋達(dá)定理可以證明得到+=,進(jìn)而說明結(jié)論成立,故答案為①④
考點:圓錐曲線的性質(zhì)
點評:主要是考查了圓錐曲線的方程以及性質(zhì)的運用,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
π |
6 |
∫ | 1 -1 |
1-x2 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
p |
2 |
x2 |
a2 |
y2 |
b2 |
θ |
2 |
1 |
|AF| |
1 |
p |
1 |
|BF| |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com